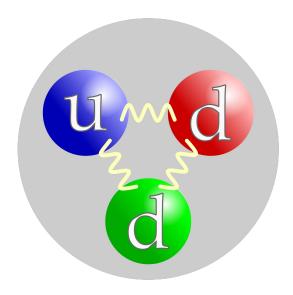
Simulating the Strong Force with Neural Networks

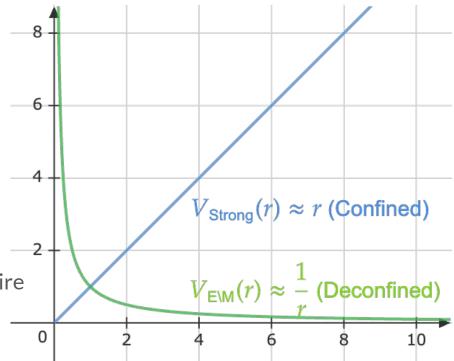

By: Jack Biggins

What is Strong Force?

Four Fundamental Forces:

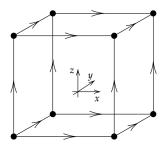
- -Gravity
- -E/M
- -Weak Force
- -Strong Force

Strong Force holds together quarks inside protons and neutrons

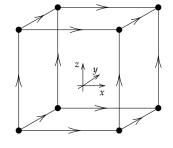


Neutron

Purpose

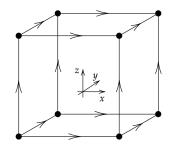

- -Strong Force is weird
 - -Strengthens with distance (r)

- -Calculations hard
 - -Current numerical methods require supercomputers


Toy Model: Z₂ Gauge Theory

Simpler model that captures behavior of strong force

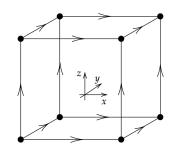
Toy Model: Z₂ Gauge Theory


Simpler model that captures behavior of strong force

Quantum State:
$$|\psi\rangle=|01\rangle$$

Toy Model: Z, Gauge Theory

Simpler model that captures behavior of strong force



Quantum State:
$$|\psi\rangle = |01\rangle$$

$$H = H_E + H_B \approx g^2 \sum_{l \in \text{links}} [2 - P_l] + \frac{1}{g^2} \sum_{\substack{(l_1, l_2, l_3, l_4) \\ \in \text{plags}}} \left[2 - Q_1^{\dagger} Q_2^{\dagger} Q_3 Q_4 \right]$$

Toy Model: Z, Gauge Theory

Simpler model that captures behavior of strong force

Quantum State:
$$|\psi\rangle = |01\rangle$$

$$H = H_E + H_B \approx g^2 \sum_{l \in \text{links}} [2 - P_l] + \frac{1}{g^2} \sum_{\substack{(l_1, l_2, l_3, l_4) \\ \in \text{plaqs}}} \left[2 - Q_1^{\dagger} Q_2^{\dagger} Q_3 Q_4 \right]$$

Find minimum energy state:
$$E_0 = \langle \psi_0 | H | \psi_0 \rangle$$

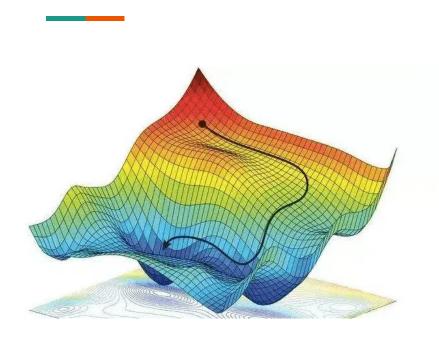
[Horn, Weinstein, Yankielowicz '79]

Problem: The world is not a 2x2x2 lattice

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$|\psi\rangle = |01\rangle = |0\rangle \otimes |1\rangle = \begin{bmatrix} 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Complications in the Math: $|\psi\rangle$ cannot be solved

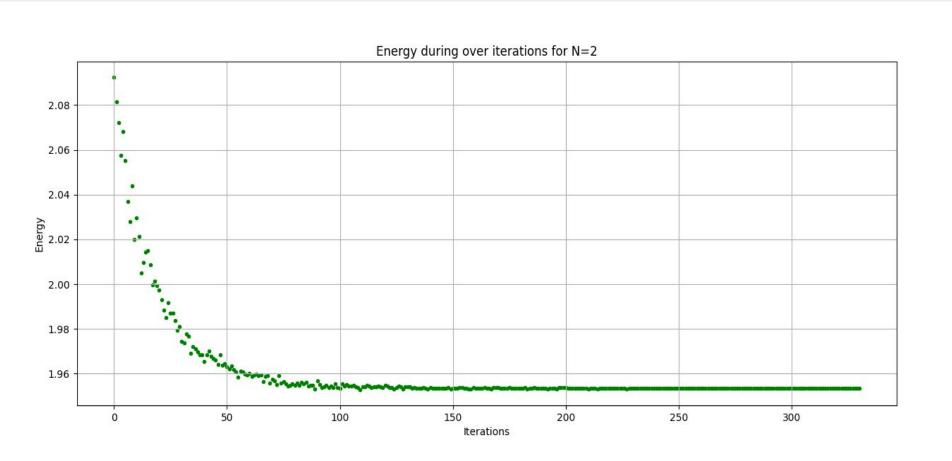

$$|0\rangle = \begin{bmatrix} 1\\0 \end{bmatrix} \quad |1\rangle = \begin{bmatrix} 0\\1 \end{bmatrix}$$

$$|\psi\rangle = |01\rangle = |0\rangle \otimes |1\rangle = \begin{bmatrix} 1\begin{bmatrix}0\\1\end{bmatrix}\\0\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}0\\1\\0\\0\end{bmatrix}$$

$$dim(\psi) = 2^{\text{#links}} = 2^{3(\text{#nodes})} = 2^{3n^3}$$

E.g. 6x6x6 -> 1.17x10^195

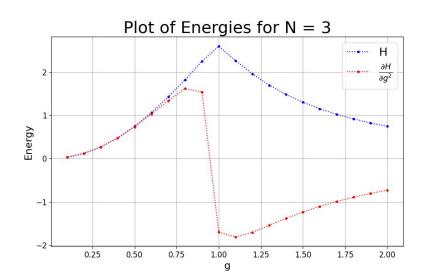
Complications in the Math: $|\psi\rangle$ cannot be solved

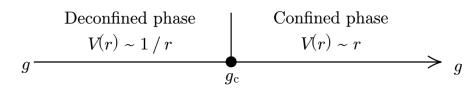

Machine Learning Solution

NN Quantum State

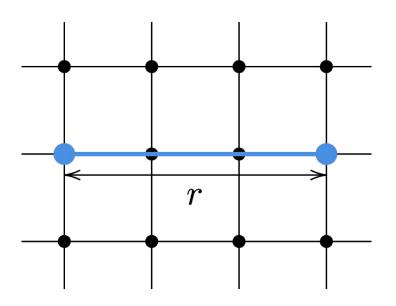
State $|\psi\rangle$ \rightarrow NN

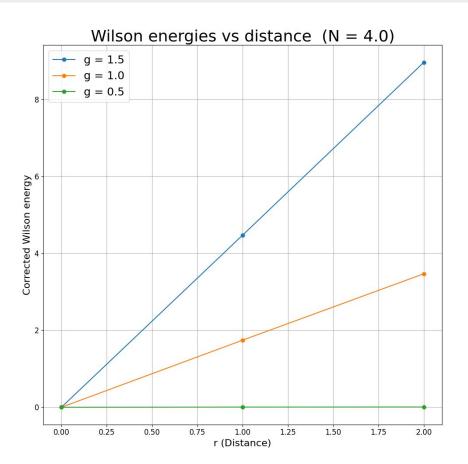
Energy → Loss Function


Finding $|\psi_0\rangle o$ Training


Now what?

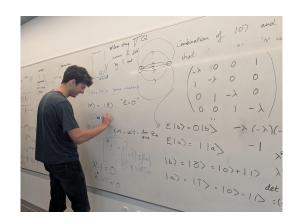
What do we do with $|\psi_0\rangle$?


Critical Coupling Constant (g_c)

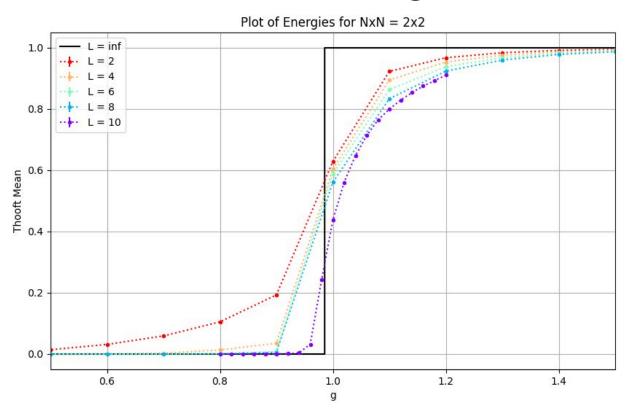


Varying g gives a first order phase transition E.g. water \rightarrow steam

Test Charges


Conclusion

Using NN to model the strong force is a promising method.



Future Work

LxNxN rectangular lattices to calculate \boldsymbol{g}_{c}

LxNxN Findings

$$|\psi\rangle = a|\uparrow\uparrow\rangle + b|\uparrow\downarrow\rangle + ... = \sum_{c} \psi(c)|c\rangle$$

Extra Equations