

Exactly marginal deformations and their supergravity duals

Anthony Ashmore

Sorbonne Université

Generalized Geometry Meets String Theory - 16th May 2024

Collaborators

Dan Waldram

Michela Petrini

Ed Tasker

Stephanie Baines

Motivation & "The Question"

Set-up

Focus on type IIB solutions in 10d with 4d N = 1 SCFTs duals

• Canonical example

$$AdS_5 \times S^5 \iff 4d N = 4 SYM$$

• Generalisation with all fluxes

$$AdS_5 \times M \iff 4d N = 1 SCFT$$

Known solutions

- e.g. metric + $F_5 \Rightarrow M$ is Sasaki–Einstein
- Extra isometries: e.g. Pilch–Warner [Pilch, Warner '00]; β deformation [Lunin, Maldacena '05]

How do we find more general solutions?

- Isolated solutions? Hard
- Deformations of known solutions? This talk

What can we understand about these solutions without their explicit form?

• What information might we have access to?

Inspiration / guidance from dual field theories

4d N = 4 SYM in N = 1 language

Three chiral fields Φ^i with SU(3) global symmetry and superpotential

 $\mathcal{W} = \epsilon_{ijk} \operatorname{tr}(\Phi^i \Phi^j \Phi^k)$

F-terms $d\mathcal{W} = 0 \Rightarrow \Phi^i$ commute: $[\Phi^2, \Phi^3] = 0$

Chiral ring \leftrightarrow ring of holomorphic functions on $C(S^5) = \mathbb{C}^3$:

$$\mathcal{O}_f = f_{i_1...i_n} \operatorname{tr}(\Phi^{i_1} \dots \Phi^{i_n}) \quad \leftrightarrow \quad f_{i_1...i_n} z^{i_1} \dots z^{i_n}$$

Hilbert series: graded count of single-trace operators modulo *F*-term relations

$$H(t) = \sum_{k} n_{k} t^{k} = \frac{1}{(1-t)^{3}} = 1 + 3t + 6t^{2} + 10t^{3} + \dots$$

Marginal deformations

e.g. N = 1 deformations of N = 4 SYM [Leigh, Strassler '95]

 $\delta \mathcal{W} = f_{ijk} \operatorname{tr}(\Phi^i \Phi^j \Phi^k)$

- $f_{ijk} \in \underline{10}_{\mathbb{C}}$ of SU(3) 10 complex d.o.f.
- One-loop beta functions

$$f_{ikl}\overline{f}^{jkl} - \frac{1}{3}\delta^j_i f_{klm}\overline{f}^{klm} = 0$$

 $2_{\mathbb{C}}$ exactly marginal couplings give conformal manifold [Kol '02, Kol '10, Green et al. '10]

$$\mathcal{M}_{\mathsf{c}} = \{f_{ijk}\} // \operatorname{\mathsf{SU}}(3) = \{f_{ijk}\} / \operatorname{\mathsf{SL}}(3, \mathbb{C})$$

We can choose

$$\delta \mathcal{W} = f_{\beta} \operatorname{tr}(\Phi^{1} \Phi^{2} \Phi^{3}) + f_{\lambda} \operatorname{tr}\left[(\Phi^{1})^{3} + (\Phi^{2})^{3} + (\Phi^{3})^{3}\right]$$

F-term relations define non-commutative Sklyanin algebra [Ginzburg '06]

Chiral operators for generic f_β and f_λ counted by [Van den Bergh '94]

$$H(t) = \frac{(1+t)^3}{1-t^3} = 1 + 3t + 3t^2 + 2t^3 + \dots$$

• Counting not known for other N = 1 SCFTs

What do we know about the dual supersymmetric geometries? *Not much*

- $f_{\lambda} = 0$: " β deformation", preserves U(1)² isometry, exact supergravity solution known [Lunin, Maldacena '05]
- Generic case: no isometries other than U(1)_R (and no hope?)
- For S⁵, *tour de force* 3rd-order perturbative analysis [Aharony, Kol, Yankielowicz '02], but full solution not known

Understand the geometry dual to a generic N = 1 SCFT?

• If not the full geometry, maybe some partial data?

Count the chiral operators for the deformed theories from the geometry?

- Want to count these around the deformed solutions
- Akin to counting Kaluza–Klein modes even for explicitly known solutions, this is hard...

But field theory seems so simple?

Understand the geometry dual to a generic N = 1 SCFT?

- Integrable structures (X, K) in $E_{6(6)} \times \mathbb{R}^+$ gen. geometry
- Data of superpotential W encoded by class [X]

Focus on those obtained as deformations of Sasaki–Einstein, e.g. $\mathsf{S}^5,\mathsf{T}^{1,1},...$

- X solves weaker "exceptional Sasaki" conditions
- Only "holomorphic" data is explicit, but can argue for existence of full solution

Count the chiral operators for the deformed theories from the geometry?

• Class [X] is sufficient to calculate holomorphic quantities, e.g. Hilbert series

- 1. Review supersymmetry via generalised structures
- 2. Describe supergravity analogue of holomorphic data encoded by $\ensuremath{\mathcal{W}}$
- 3. Give holomorphic data that determines full solution up to complexified diffeos + gauge
- 4. Compute chiral spectrum for deformed SCFTs from dual geometry

Supersymmetry & generalised structures

Supersymmetric AdS₅ backgrounds

Generic type IIB solution in 10d preserving 8 supercharges with all fields $(\Delta, \tau, H, F_3, F_5, g)$

$$ds_{10}^2 = e^{2\Delta} ds^2 (AdS_5) + ds^2 (M)$$

Symmetries: GDiff ~ diffeos + p-form gauge

$$\delta B^{i} = d\lambda^{i}, \qquad \delta C_{4} = d\rho - \frac{1}{2}\epsilon_{ij}d\lambda^{i} \wedge dB^{j}$$

Supersymmetry: fermions = 0 and δ_{ϵ} (fermions) = 0

$$abla_m \epsilon + (\mathsf{flux})_m \cdot \epsilon = 0, \qquad \gamma^m
abla_m \epsilon + \mathsf{flux} \cdot \epsilon = 0$$

with $\epsilon = (\epsilon_1, \epsilon_2)$ stablised by USp(6) [Coimbra, Strickland-Constable, Waldram '14]

11

e.g. *M* is Sasaki–Einstein

Geometry defined by nowhere-vanishing tensors σ_m , j_{mn} and Ω_{mn}

- Defined by spinor bilinears: $j_{mn} \sim \bar{\epsilon} \gamma_{mn} \epsilon$, etc.
- Nowhere-vanishing vector $\xi = g^{-1}\sigma$

Tensors satisfy algebraic conditions

$$i_{\xi}\sigma = 1, \qquad i_{\xi}j = i_{\xi}\Omega = j \wedge \Omega = 0, \qquad j \wedge j = \frac{1}{2}\Omega \wedge \overline{\Omega}$$

Invariant under $\text{SU}(2)\subset\text{GL}(5,\mathbb{R})$

Supersymmetry implies differential conditions on invariant tensors

$$\mathrm{d}\sigma=2j,\qquad \mathrm{d}\Omega=\mathrm{3i}\sigma\wedge\Omega,$$

 $F_5=\mathrm{d}C_4=4\,\mathrm{vol}_g$

 ξ is a Killing vector (Reeb), \mathcal{L}_{ξ} preserves full solution

- ξ dual to U(1)_R R-symmetry of N = 1 SCFT
- Supersymmetry \Rightarrow equations of motion

SUSY backgrounds with flux

Long history of using G-structures and generalised geometry to analyse supersymmetric flux backgrounds

Generic AdS₅ case: spinor ϵ defines integrable USp(6) structure – "exceptional Sasaki–Einstein" [AA, Petrini, Waldram '16]

• Defined by pair (X, K) in $E_{6(6)} \times \mathbb{R}^+$ generalised geometry

 $X \sim$ hyper d.o.f. $K \sim$ vector d.o.f.

Construct gen. tensors as reps of $E_{6(6)} \times \mathbb{R}^+$

$$\mathsf{GL}(5,\mathbb{R})\subset\mathsf{E}_{6(6)} imes\mathbb{R}^+$$

K structure

Generalised vector V^A parametrises diffeos + gauge transformations ($T \equiv TM$, etc.)

$$\frac{27}{V^{A}} \sim E \simeq T \oplus 2T^{*} \oplus \Lambda^{3}T^{*} \oplus 2\Lambda^{5}T^{*}$$
$$V^{A} = v^{a} + \lambda^{i}_{a} + \rho_{abc} + \sigma^{i}_{abcde}$$

Invariant cubic form c on E

$$c(V, V, V) = -\frac{1}{2} \imath_{v} \rho \wedge \rho + \dots \in \det T^{*}$$

K structure ("vector-multiplet" structure) defined by

$$K \in E$$
 s.t. $c(K, K, K) > 0$

Generalised vector invariant under F₄₍₄₎

X structure

Adjoint bundle

$$\frac{78}{R^{A}} \sim \text{ad} F \simeq 3\mathbb{R} \oplus (T \otimes T^{*}) \oplus 2\Lambda^{2}T^{*} \oplus 2\Lambda^{2}T \oplus \Lambda^{4}T^{*} \oplus \Lambda^{4}T$$
$$R^{A}{}_{B} = \dots + B^{i}_{ab} + \dots + C_{abcd} + \dots$$

X structure ("hypermultiplet" structure) defined by

$$X \in \operatorname{ad} F_{\mathbb{C}} \otimes \operatorname{det} T^*$$
 s.t. $\operatorname{tr}(X\overline{X}) < 0$

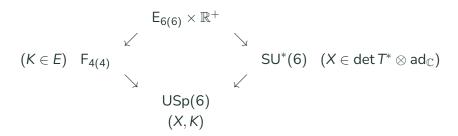
where $X = \kappa (J_1 + iJ_2)$ defines \mathfrak{su}_2 algebra

$$[J_{\alpha}, J_{\beta}] = 2\kappa \epsilon_{\alpha\beta\gamma} J_{\gamma}, \qquad \text{tr}(J_{\alpha} J_{\beta}) = -\kappa^2 \delta_{\alpha\beta}, \qquad \kappa^2 \in \det T^*$$

Complex adjoint tensor invariant under SU*(6)

Generalised structures

Spinor ϵ defines the pair (X, K)



Intersect on USp(6) if compatible

 $X \cdot K = 0$

(X, K) specify all supergravity fields for solution

Recall G-structure defined by (σ, j, Ω)

K structure defines "contact structure"

$$K_{\mathsf{SE}} = \mathsf{e}^{\mathsf{C}_4}(\xi - \sigma \wedge j) \quad \in T \oplus \Lambda^3 T^* \subset E$$

X structure defines "Cauchy–Riemann structure"

$$X_{\mathsf{SE}} = \mathrm{e}^{\mathsf{C}_4 - \frac{1}{4}\mathrm{i}\,\Omega \wedge \bar{\Omega}} n^i \,\sigma \wedge \Omega \quad \in 2\Lambda^3 T^* \subset \mathsf{ad}\, F_{\mathbb{C}} \otimes \det T^*$$

where

$$n^i = \frac{1}{\sqrt{\operatorname{im} \tau}} (1, \tau)^i$$

Symmetries act via Dorfman derivative

$$\mathbb{L}_{V} = \mathcal{L}_{v} - (\mathsf{d}\lambda^{i} + \mathsf{d}
ho) \cdot \ \sim \mathsf{diffeo} + \mathsf{gauge}$$

Supersymmetry of the solution is equivalent to [AA, Petrini, Waldram '16]

$$\mathbb{L}_{K}K = 0, \qquad \mathbb{L}_{K}X = 3iX,$$

$$\mu_{+}(V) = 0, \qquad \mu_{3}(V) = 3\int_{M}c(K, K, V) \quad \forall V$$

- "Exceptional Sasaki–Einstein" (ESE)
- Generalised USp(6) structure with constant singlet torsion
- \mathbb{L}_{K} is action of $U(1)_{R}$ of dual SCFT

Exceptional Sasaki geometry

Can we solve for the general supergravity solution dual to the deformed field theories? *Unlikely!*

• Solving for generic solutions seems intractable – no isometries; harder than Calabi–Yau

Instead, focus on holomorphic data for X

$$X \cdot K = 0,$$
 $\mathbb{L}_K K = 0,$ $\mu_+ = 0,$ $\mathbb{L}_K X = 3iX$

- "Exceptional Sasaki" (ExS)
- X defines an exceptional complex structure [Tennyson, Waldram '21]

Let \mathcal{Z}_K be the space of X structures which are ExS for a fixed K

$$\mathcal{Z}_{K} = \{X \mid \mu_{+} = 0, \, \mathbb{L}_{K}K = 0, \, X \cdot K = 0, \, \mathbb{L}_{K}X = 3iX\}$$

Final SUSY condition is a moment map for $GDiff_K$

$$\mu_{\mathsf{K}} \coloneqq \mu_{\mathsf{3}} - \mathsf{3} \int \mathsf{c}(\mathsf{K},\mathsf{K},\,\cdot\,)$$

with moduli space

$$\mathcal{M}_{c} \simeq \frac{\{X \in \mathcal{Z}_{K} \mid \mu_{K} = 0\}}{\mathsf{GDiff}_{K}} \equiv \mathcal{Z}_{K} // \operatorname{GDiff}_{K}$$

• \mathcal{M}_{c} is conformal manifold of dual SCFT [Kol '02, Kol '10, Green et al. '10] \mathcal{Z}_{K} admits a GDiff_K-invariant Kähler structure

Symplectic quotient equivalent to GIT quotient by complexified action

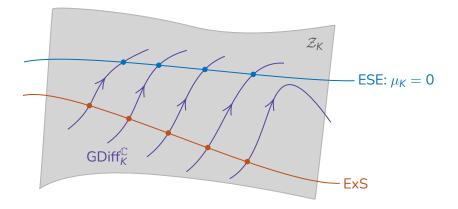
$$\mathcal{M}_{\mathsf{c}} \simeq \mathcal{Z}_{\mathcal{K}} /\!/ \operatorname{\mathsf{GDiff}}_{\mathcal{K}} \simeq \mathcal{Z}_{\mathcal{K}} / \operatorname{\mathsf{GDiff}}_{\mathcal{K}}^{\mathbb{C}}$$

Final supersymmetry condition imposed by quotient

 In favourable case, given ExS structure (X, K), orbit of X under GDiff^C_K intersects with μ_K = 0

Useful: find simpler ExS structure for complicated geometry

Stability and existence



Subtlety: only the subset of polystable points have orbits that reach $\mu_{\rm K}=0$

X and K encode supergravity hyper- and vector-multiplet degrees of freedom

• Hypers dual to chiral multiplets in field theory

Holomorphic data of \mathcal{W} encoded by X up to $GDiff^{\mathbb{C}}$

$$[X] = \{X' = \Phi^*(X) \mid \mu_+ = 0, \, \Phi \in \mathsf{GDiff}^{\mathbb{C}}\}$$

Full solution (X, K) may be out of reach, but can solve for a simpler representative of [X]

 Any field theory quantity determined by W, e.g. chiral spectrum, can be computed using any representative of [X]

Explicit ExS solutions for deformed geometries

- 1. Start with known solution (X, K)
- 2. Deform to (X_{ED}, K) which solves weaker ExS conditions
- 3. Argue that X_{ED} can be $GDiff_K^{\mathbb{C}}$ -transformed to solve $\mu_K = 0$, i.e. a full supersymmetric solution
- 4. Use (X_{ED}, K) to calculate interesting quantities characterising the dual deformed field theory

This is a completely general picture, but we'll focus on cases where the known solution is Sasaki–Einstein New exceptional Sasaki solution for deformed SE geometries

$$\begin{split} \mathcal{K} &= \mathcal{K}_{\mathsf{SE}} \\ \mathcal{X}_{\mathsf{ED}}(f) &= \mathrm{e}^{-\frac{1}{4}\mathrm{i}\,\Omega \wedge \bar{\Omega}} \mathrm{e}^{r^{i}\mathsf{A}(f)} \mathrm{e}^{r^{i}r_{j}\varepsilon(f)} \big(\mathrm{s}^{i}(f)\,\sigma \wedge \Omega + \mathrm{d}f \big) \end{split}$$

where

- *f* is holomorphic and charge three, $\mathcal{L}_{\xi}f = 3if$
- $df \sim \beta \lrcorner (\sigma \land \Omega)$ with bivector $\beta \sim (\sigma \land \overline{\Omega})^{\sharp} \lrcorner df$
- Two-form A(f) linear in f
- Function $\varepsilon(f)$ quadratic in f
- K_{SE} is unchanged

Geometry satisfies all susy conditions except $\mu_{\mathcal{K}} = 0$

Are these stable?

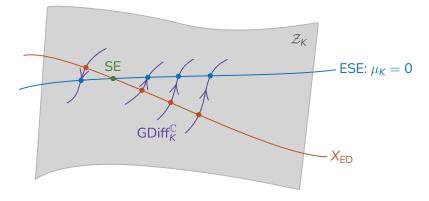
Given these solutions to ExS conditions, we know:

- 1. There is an open subset of stable points around $X_{ED}(0) = X_{SE}$
- 2. $X_{ED}(f)$ gives continuous one-parameter family of solutions under $f \mapsto \lambda f$
- 3. Linearised $X_{ED}(f)$ matches known infinitesimal solutions to $\mu_{K} = 0$ that necessarily lie in a stable subset [AA, Gabella, Graña, Petrini, Waldram '16]

Implies that for small but finite f, all $X_{ED}(f)$ are stable and can be completed to full supersymmetric solutions

• Existence of the deformed supergravity backgrounds

Physical interpretation



- Orbit [X_{ED}] ≃ GDiff^C_K · X_{ED} fixes superpotential W of dual field theory
- $\mathbb{L}_{\mathcal{K}} X = 3iX$ fixes δW to be a marginal deformation (dual theory is conformal)
- Motion along orbit \equiv renormalisation of Kähler potential

Example: deformations of five-sphere

Holomorphic charge-*k* functions descend from cone $C(S^5) = \mathbb{C}^3$ $f = f_{i_1...i_k} z^{i_1} \dots z^{i_k}, \qquad \mathcal{L}_{\xi} f = ikf$

 (X_{ED}, K) is exceptional Sasaki for any $\mathcal{L}_{\xi} f = 3if$

- Explicit expressions for A(f) and $\varepsilon(f)$
- Reproduces second-order perturbative analysis of [Aharony, Kol, Yankielowicz '02]
- For $f = z^1 z^2 z^3$, can find the GDiff^C_K that transforms X_{ED} to known β -deformed solution [Lunin, Maldacena '05]

Same analysis for deformations of any Sasaki–Einstein background, e.g. $T^{1,1}$, etc.

Further deformations and counting chiral operators

What can we calculate using the ExS solutions? $[X_{ED}]$ fixes superpotential so should encode chiral spectrum of dual field theory

chirals = {chiral operators} / {d
$$W = 0$$
}

Can count these graded by *R*-charge \rightarrow Hilbert series

- Counting for Sasaki–Einstein done by [Eager, Schmude, Tachikawa '12]
- But we want to count for the deformed theory! Hard as $d\mathcal{W}=0 \text{ defines a non-commutative algebra}$

Equivalent to further deformations of X with no constraint on charge, $\mathbb{L}_K X \neq 3iX$

chirals = {
$$\delta X \mid \delta X \cdot K = 0, \ \delta \mu_+ = 0$$
} / GDiff^C_K

• Deformations of SCFT preserving N = 1 but not conformal

Counting δX up to symmetries defines a cohomology since

$$E_{\mathbb{C}} \xrightarrow{\mathbb{L}_{\bullet} X} T\mathcal{Z}_{K} \xrightarrow{\delta \mu_{+}} E_{\mathbb{C}}^{*}$$

Counting depends only on class [X] and can be graded by charge under \mathbb{L}_{K}

Example: five-sphere

Chiral spectrum around N = 4 theory \equiv charge-*k* deformations of X_{SE} , i.e. $X_{ED}(f)$ without restricting to k = 3

$$f = f_{i_1 \dots i_k} z^{i_1} \dots z^{i_k}, \qquad \mathcal{L}_{\xi} f = \mathsf{i} k f$$

charge-k deformations $n_k \equiv \#$ symmetric polynomials in (z^1, z^2, z^3)

$$H(t) = \sum_{k} n_{k} t^{k} = \frac{1}{(1-t)^{3}} = 1 + 3t + 6t^{2} + 10t^{3} + \dots$$

- Matches Hilbert series of N = 4 SYM theory \checkmark
- General SE case counted by Kohn–Rossi cohomology [Eager, Schmude, Tachikawa '12]

Chiral spectrum at X_{ED}

When deformed solution is generic ($\eta := df \neq 0$, "type one")

$$[X_{\mathsf{ED}}] \simeq \mathrm{e}^{b^i(f) + c_4(f)} \eta$$

cohomology reduces to " η cohomology" [Tasker '21]

$$\ldots \xrightarrow{d} \eta \wedge \Lambda^{p} T^{*} \xrightarrow{d} \eta \wedge \Lambda^{p+1} T^{*} \xrightarrow{d} \ldots$$

fixed by Kohn-Rossi cohomology of original Sasaki-Einstein

Result: universal expression for Hilbert series

$$H(t) \equiv \sum_{k} n_{k} t^{k} = 1 + \mathcal{I}_{\text{s.t.}}(t) - [k \equiv_{3} 0, k > 0] t^{2k}$$

in terms of "single-trace superconformal index" $\mathcal{I}_{s.t.}(t)$

e.g. deformed S^5 with

$$f = f_{\beta} z^{1} z^{2} z^{3} + f_{\lambda} \Big[(z^{1})^{3} + (z^{2})^{3} + (z^{3})^{3} \Big]$$

Hilbert series is

$$H(t) = \frac{(1+t)^3}{1-t^3} = 1 + 3t + 3t^2 + 2t^3 + \dots$$

in agreement with counting from cyclic homology of Sklyanin algebra [Van den Bergh '94] ✓

New results for deformations of regular SEs: $T^{1,1}$, $\#n(S^2 \times S^3)$, etc.

Summary

Background geometry naturally encodes superpotential of dual SCFT

Can find supergravity solution for deformations up to $\text{GDiff}_{K}^{\mathbb{C}}$ action – large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators Outlook

- Same/similar formalism for AdS₅/AdS₄ in type II / M-theory
- New perspective on *a*-maximisation for supersymmetric flux backgrounds
- Cohomology gives supersymmetric index

Marginal deformations, holomorphic data & counting chirals

The μ_{α} are a triplet of moment maps for the action of

 $GDiff \simeq diffeo + gauge$

Infinitesimally, $V \in \Gamma(E) \simeq \mathfrak{gdiff}$ acts by

 $\delta J_{\alpha} = \mathbb{L}_{V} J_{\alpha}$

Action preserves hyper-Kähler structure on space of J_{α} so that

$$\mu_{\alpha}(\mathsf{V}) = -\frac{1}{2} \epsilon_{\alpha\beta\gamma} \int_{\mathcal{M}} \mathsf{tr}(\mathsf{J}_{\beta}\mathbb{L}_{\mathsf{V}}\mathsf{J}_{\gamma})$$

The field theory result of [Kol '02, Kol '10, Green et al. '10] that all marginal deformations are exactly marginal unless there is a global symmetry follows directly from moment map structure e.g. $AdS_5 \times S^5$, (*X*, *K*) preserved by SU(3)

- Linearised deformation parameterised by $f = f_{ijk} z^i z^j z^k$
- $\mu_{\alpha}(V)$ trivially zero for $V \in SU(3)$
- Further moment map for SU(3) and quotient on $\{f_{ijk}\}$

$$\mu_{\rm SU(3)} \equiv f_{ikl}\overline{f}^{jkl} - \frac{1}{3}\delta^j_i f_{klm}\overline{f}^{klm} = 0$$

gives space of exactly marginal couplings

Flat X structures

X defines an (almost) exceptional complex structure via

[Tennyson, Waldram '21]

$$J \sim rac{\mathsf{i}}{\mathsf{tr}(X\bar{X})}[X,\bar{X}]$$

which decomposes

$$E_{\mathbb{C}} \simeq L_1 \oplus L_{-1} \oplus L_0$$

$$\underline{27} \rightarrow \underline{6}_1 + \underline{6}_{-1} + \overline{\underline{15}}_0$$

Integrability

ECS \Leftrightarrow $\mathbb{L}_V W \in \Gamma(L_1) \quad \forall V, W \in \Gamma(L_1)$

What is missing for $\mu_+ = 0$? Impose

$$\mathbb{L}_V X = 0 \quad \forall V \in \Gamma(L_{-1})$$

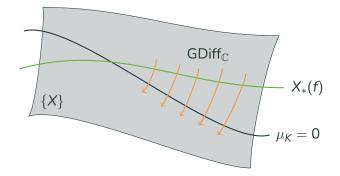
where $X: \det T \otimes E_{\mathbb{C}} \to L_{-1}$

General argument

Given solution (X_*, K) to ES conditions, can show that full solution exists:

- 1. Space of X with fixed K inherits invariant Kähler metric
- 2. $\mu_{K}(V) = \mu_{3}(V) \int_{M} c(K, K, V)$ is moment map for GDiff with fixed K
- 3. (X_*, K) matches exactly marginal solutions for infinitesimal deformations
- 4. Open subset of stable points that lie on orbits of $\text{GDiff}_{\mathbb{C}}^{K}$ will intersect $\mu_{K} = 0$ all (X_{*}, K) are stable and thus can be mapped to full solutions
- 5. Different X_{*} flow to different solutions unless there are isometries
- X_{*} related by isometries map to same solution under GDiff^K_ℂ, in agreement with field theory [Kol '02, Kol '10, Green et al. '10]

Physical interpretation



- 1. Fixing an orbit $[X] \simeq \text{GDiff}_{\mathbb{C}} \cdot X$ fixes the superpotential \mathcal{W} of dual SCFT
- 2. $\mathbb{L}_{K}X = 3iX$ fixes $\Delta = 3 \text{marginal}$ deformation
- 3. Motion along orbit \equiv renormalisation of Kähler potential

Mesonic operators

 $tr(\Phi...) \leftrightarrow holomorphic functions f(z) on cone$

• Marginal
$$\Rightarrow \mathcal{L}_{\xi}f = 3if$$

Cone is
$$C(S^5) = \mathbb{C}^3$$
; functions are $f = f_{ijk}z^i z^j z^k$
Recall

$$X = e^{\frac{1}{2}ij^2} u^i \sigma \wedge \Omega \sim u^i \sigma \wedge \Omega \quad \text{up to GDiff}_{\mathbb{C}}$$

How do we deform this by f? Marginal for $\mathcal{L}_{\xi}f = 3if$

New family of solutions to holomorphic conditions

$$K = \xi - \sigma \wedge j, \qquad X_* = e^{b^i(f)}(df + v^i(f)\sigma \wedge \Omega)$$

with $b^i \in \Lambda^2 T^*_{\mathbb{C}}$ linear and v^i quadratic in f

- In S⁵ case and *f* cubic, reproduces second-order parts of [Aharony, Kol, Yankielowicz '02]
- If $f = z^1 z^2 z^3$, can solve for explicit GDiff_C to take solution to exact β -deformed solution
- Works for deformation of any Sasaki–Einstein background $-T^{1,1}$, etc.

What can we calculate using this (partial) solution?

 X_* fixes superpotential so should encode space of mesonic operators, i.e. chiral ring

chiral ring =

$$\mathcal{O}_f = f_{ijkl\dots} \operatorname{tr}(\Phi^i \Phi^j \Phi^k \Phi^l \dots)$$

Can count these graded by *R*-charge \rightarrow Hilbert series

- Counting for Sasaki–Einstein point known [Eager, Schmude, Tachikawa '12]
- But we want to count for the deformed theory!

Counting δX up to $GDiff_{\mathbb{C}}$ defines a cohomology since

$$\mathsf{E}_{\mathbb{C}} \xrightarrow{\mathbb{L}_{\bullet} X} T\{X\} \xrightarrow{\delta \mu_{+}} E_{\mathbb{C}}^{*}$$

Cohomology counts chiral operators (drop $\mathbb{L}_{K}X = 3iX$ condition)

chirals
$$\sim \frac{\{\delta X \mid \delta \mu_+ = 0\}}{\{\delta X = \mathbb{L}_V X\}}$$

Counting depends only on class of X_* and $[X] = [X_*]$

Easiest when the deformed solution is generic – $df \neq 0$

• Using $\operatorname{GDiff}_{\mathbb{C}}$, can then write X_* as

$$X_* = e^{\tilde{b}^i(\tau, f) + c_4(\tau, f)} df$$

Cohomology then reduces to [Tasker '21]

$$\ldots \xrightarrow{d} df \wedge \Lambda^{p} T^{*}_{\mathbb{C}} \xrightarrow{d} df \wedge \Lambda^{p+1} T^{*}_{\mathbb{C}} \xrightarrow{d} \ldots$$

which can be computed using Kohn–Rossi cohomology of original Sasaki–Einstein

Hilbert series

$$H(t) \equiv \sum_{k} n_{k} t^{k} = 1 + \mathcal{I}_{\text{s.t.}}(t) - [k \equiv_{3} 0, k > 0] t^{2k}$$

e.g. deformed S^5 with

$$f = f_{\beta} z^{1} z^{2} z^{3} + f_{\lambda} \left[(z^{1})^{3} + (z^{2})^{3} + (z^{3})^{3} \right]$$

Hilbert series is

$$H(t) = \frac{(1+t)^3}{1-t^3} = 1 + 3t + 3t^2 + 2t^3 + \dots$$

in agreement with [Van den Bergh '94]

New results

e.g. $T^{1,1}$ – undeformed result

$$H(t) = \frac{1 + t^{3/2}}{(1 - t^{3/2})^3} = 1 + 4t^{3/2} + 9t^3 + 16t^{9/2} \dots$$

For theory with generic deformed superpotential

$$H(t) = \frac{1 + 4t^{3/2} + 2t^3}{1 - t^3} = 1 + 4t^{3/2} + 3t^3 + 4t^{9/2} + \dots$$

- Matches explicit counting of gauge-invariant chiral field modulo *F*-term relations up to k = 21/3 [Tasker '21]
- No previous calculation of cyclic homology / chirals for deformed theory

New results for $\#n(S^2 \times S^3)$, etc.

Background geometry naturally encodes superpotential of dual SCFT

Can find supergravity solution for deformations up to ${\rm GDiff}_{\mathbb C}$ action – large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators Future

- Same/similar formalism for AdS₅/AdS₄ in M-theory
- Cohomology gives supersymmetric index
- a-maximisation for generic supersymmetric backgrounds $a^{-1} \sim \int_M c(K, K, K)$