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Motivation & “The Question”



Focus on type IIB solutions in 10d with 4d N = 1 SCFTs duals

e Canonical example

AdSs xS° < 4dN=4SYM
e Generalisation with all fluxes

AdSs xM & 4dN=1SCFT

Known solutions

e e.g. metric + F5 = M is Sasaki—Einstein
e Extra isometries: e.g. Pilch-Warner [Pilch, Warner ‘00]; 3
deformation [Lunin, Maldacena ‘05]



How do we find more general solutions?

e [solated solutions? Hard

e Deformations of known solutions? This talk

What can we understand about these solutions without their
explicit form?

e What information might we have access to?

Inspiration / guidance from dual field theories



4d N = 4 SYMin N = 1 language

Three chiral fields &' with SU(3) global symmetry and
superpotential

W = €ijk tr(¢i¢j¢k)
F-terms dWW = 0 = &' commute: [¢2,$3] =0

Chiral ring < ring of holomorphic functions on C(S5) =C3:

Of = i1.in tr(d)il c q)i”) —  f; Zi1 . Zin

Lo

Hilbert series: graded count of single-trace operators modulo
F-term relations

1
Ht) = itk = EREE =1+43t+6t2+ 103+ ...
K



Marginal deformations

e.g. N = 1 deformations of N = 4 SYM [Leigh, Strassler ‘95]

W = i tr(d'd oK)

e fii € 10¢ of SU(3) - 10 complex d.of.
e One-loop beta functions

P — 30 fiamf ™ = 0

2¢ exactly marginal couplings give conformal manifold [Kol ‘02,
Kol ‘10, Green et al. ‘10]

Me = {fix} // SU3) = {fii} / SL(3,C)



Superpotential and chirals

We can choose
OV = Ftr(®1020%) 1 ftr| (1) + (02)% + (077

F-term relations define non-commutative Sklyanin algebra
[Ginzburg ‘06]

Chiral operators for generic fz and fy counted by [Van den Bergh
‘94]
(1+1t)3

H="1"% =

1+3t+3t2+283 +...

e Counting not known for other N = 1 SCFTs



Dual geometries?

What do we know about the dual supersymmetric geometries?
Not much

e fy = 0: “3 deformation”, preserves U(1)? isometry, exact
supergravity solution known [Lunin, Maldacena ‘05]

¢ Generic case: no isometries other than U(1)g (and no
hope?)

e For S, tour de force 3rd-order perturbative analysis
[Aharony, Kol, Yankielowicz ‘02], but full solution not known



Dual geometries?

Understand the geometry dual to a generic N = 1 SCFT?
e If not the full geometry, maybe some partial data?

Count the chiral operators for the deformed theories from the

geometry?

e \Want to count these around the deformed solutions

e Akin to counting Kaluza—Klein modes — even for explicitly
known solutions, this is hard...

But field theory seems so simple?



Dual geometries?

Understand the geometry dual to a generic N = 1 SCFT?

e Integrable structures (X, K) in Ee(e) X R gen. geometry
e Data of superpotential WW encoded by class [X]

Focus on those obtained as deformations of Sasaki—Einstein,

eg.S° T, .

e X solves weaker “exceptional Sasaki” conditions
e Only “holomorphic” data is explicit, but can argue for
existence of full solution

Count the chiral operators for the deformed theories from the
geometry?

e Class [X] is sufficient to calculate holomorphic quantities,
e.g. Hilbert series



Plan of talk

1. Review supersymmetry via generalised structures

2. Describe supergravity analogue of holomorphic data
encoded by W

3. Give holomorphic data that determines full solution up to
complexified diffeos + gauge

4. Compute chiral spectrum for deformed SCFTs from dual
geometry
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Supersymmetry & generalised
structures



Supersymmetric AdSs backgrounds

Generic type IIB solution in 10d preserving 8 supercharges
with all fields (A, 7,H, F3, Fs,9)

ds?, = e?Ads?(AdSs) + ds?(M)

Symmetries: GDiff ~ diffeos + p-form gauge

SB'=dX,  6C4=dp— edN A dB

Supersymmetry: fermions = 0 and J.(fermions) = O
Vme + (flux)m - € =0, V"V me+flux-e =0

with € = (€1, €2) stablised by USp(6) [Coimbra, Strickland-Constable,
Waldram ‘14] 11



Example: Sasaki-Einstein

e.g. M is Sasaki-Einstein

Geometry defined by nowhere-vanishing tensors o, jmn and
an

e Defined by spinor bilinears: jmn ~ éymne, etc.
1

e Nowhere-vanishing vector { = g~ "o
Tensors satisfy algebraic conditions

wo=1, 1g=1Q=jAQ=0, jAj=1QAQ

Invariant under SU(2) C GL(5,R)

12



Example: Sasaki-Einstein

Supersymmetry implies differential conditions on invariant
tensors

do = 2j, dQ = 3ioc A Q,
F5 = dC4 = 4VO|.g

¢ is a Killing vector (Reeb), L¢ preserves full solution

e ¢ dualto U(1)g R-symmetry of N =1 SCFT

e Supersymmetry = equations of motion

13



SUSY backgrounds with flux

Long history of using G-structures and generalised geometry
to analyse supersymmetric flux backgrounds

Generic AdSs case: spinor e defines integrable USp(6)
structure — “exceptional Sasaki—Einstein” [AA, Petrini, Waldram ‘16]

» Defined by pair (X, K) in Egs) x R" generalised geometry
X ~ hyper d.of. K ~ vector d.o.f.
Construct gen. tensors as reps of Egg) X R+

GL(5,R) C E6(6) x RT

14



Generalised vector VA parametrises diffeos + gauge
transformations (T = TM, etc.)

27 ~E~Ta2T o AN3T @ 2A°T*
VA =vi+ )‘ia + Pabc + Ugbcde

Invariant cubic form con E
c(V.V,\V)=-2uprp+... €edetT
K structure (“vector-multiplet” structure) defined by

KeE st (KK K)>0

e Generalised vector invariant under F4(4) 15



Adjoint bundle

78 ~adF~3R @ (T T*) @ 2N°T* @ 2N’ T @ N* T @ AT
RAg = +B, + -+ Capeg +- .-

X structure (“hypermultiplet” structure) defined by

XcadFr®detT* st tr(XX) <0

where X = k(J1 + iJ,) defines su; algebra

Uards] = 26€apdyy  trUads) = —K2005, K2 € detT*

e Complex adjoint tensor invariant under SU"(6)
16



Generalised structures

Spinor € defines the pair (X, K)

E6(6) x RT
v pN
(K S E) F4(4) SU*(G) (X cdetT" ® ad(c)
v
USp(6)
(X, K)

Intersect on USp(6) if compatible

X-K=0

(X, K) specify all supergravity fields for solution

17



Example: Sasaki-Einstein

Recall G-structure defined by (o, j, Q)
K structure defines “contact structure”

Ksg =e“(E—oAj) eTaANT CE
X structure defines “Cauchy—Riemann structure”

Loe
Xeg = S 2 o A € 23T C adFe ® det T

where

18



Supersymmetry

Symmetries act via Dorfman derivative

Ly = £y, — (d\ +dp) - ~ diffeo 4 gauge

Supersymmetry of the solution is equivalent to [AA, Petrini,
Waldram ‘16]

LeK=0,  LgX = 3iX,

we(V)=0,  ps(V)=3 /M (KK V) WV

e “Exceptional Sasaki—Einstein” (ESE)
e Generalised USp(6) structure with constant singlet torsion

e LLxis action of U(1)g of dual SCFT
19



Exceptional Sasaki geometry




General solutions

Can we solve for the general supergravity solution dual to the
deformed field theories? Unlikely!

e Solving for generic solutions seems intractable — no
isometries; harder than Calabi-Yau

Instead, focus on holomorphic data for X
X-K=0, LK =0, e =0, LgX = 3iX

e “Exceptional Sasaki” (ExS)

e X defines an exceptional complex structure [Tennyson,
Waldram 21]

20



Moduli space

Let Z¢ be the space of X structures which are ExS for a fixed K

Zx={X|ps =0, LgK =0, X-K =0, LgX = 3iX}

Final SUSY condition is a moment map for GDiffk

=3 =3 [ (kK. )
with moduli space

_iXeZ| =0} _ :
Mc =~ GDIffK = ZK //GDIffK

e M. is conformal manifold of dual SCFT [Kol ‘02, Kol ‘10,

Green et al. ‘10] 21



GIT quotient

Zi admits a GDiffg-invariant Kahler structure

Symplectic quotient equivalent to GIT quotient by complexified
action

M. ~ Zx /| GDiffg ~ Zx / GDiffg
Final supersymmetry condition imposed by quotient

e In favourable case, given ExS structure (X, K), orbit of X
under GDiff intersects with px = 0

Useful: find simpler ExS structure for complicated geometry

22



Stability and existence

ESE: UK = 0

ExS

Subtlety: only the subset of polystable points have orbits that

reach ux =0
23



Interpretation

X and K encode supergravity hyper- and vector-multiplet
degrees of freedom

e Hypers dual to chiral multiplets in field theory

Holomorphic data of W encoded by X up to GDiff®

[X] = {X' = &*(X) | u+ = 0, & € GDiff"}

Full solution (X, K) may be out of reach, but can solve for a
simpler representative of [X]

e Any field theory quantity determined by W, e.g. chiral
spectrum, can be computed using any representative of [X]

24



Explicit ExS solutions for deformed
geometries




Strategy

1. Start with known solution (X, K)
2. Deform to (Xgp, K) which solves weaker ExS conditions

3. Argue that Xgp can be GDiff‘E—transformed to solve ux = 0,
i.e. a full supersymmetric solution

4. Use (Xgp, K) to calculate interesting quantities
characterising the dual deformed field theory

This is a completely general picture, but we'll focus on cases
where the known solution is Sasaki—-Einstein

25



Deformations of Sasaki—-Einstein

New exceptional Sasaki solution for deformed SE geometries

K = Ksg

Xen(f) = e~ A4 50 (5/(1) o A Q 4 o)

where

e fis holomorphic and charge three, L¢f = 3if
e df ~ B(o A Q) with bivector 8 ~ (o A Q)Fdf
e Two-form A(f) linear in f

e Function (f) quadraticin f

e Kgg is unchanged

Geometry satisfies all susy conditions except ux = 0

26



Are these stable?

Given these solutions to ExS conditions, we know:

1. There is an open subset of stable points around
Xep(0) = Xse

2. Xgp(f) gives continuous one-parameter family of solutions
under f +— Af

3. Linearised Xgp(f) matches known infinitesimal solutions to

uk = 0 that necessarily lie in a stable subset [AA, Gabella,
Granfa, Petrini, Waldram ‘16]

Implies that for small but finite f, all Xgp(f) are stable and can
be completed to full supersymmetric solutions

e Existence of the deformed supergravity backgrounds

27



Physical interpretation

Xeo

e Orbit [Xgp] ~ GDiff(,S - Xgp fixes superpotential W of dual
field theory
o [LgX = 3iX fixes W to be a marginal deformation (dual

theory is conformal)
e Motion along orbit = renormalisation of Kahler potential 28



Example: deformations of five-sphere

Holomorphic charge-k functions descend from cone
C(s°) =3

f=fy i 2"...2%  Lef=ikf

1.0k
(Xep, K) is exceptional Sasaki for any L.f = 3if

e Explicit expressions for A(f) and &(f)

e Reproduces second-order perturbative analysis of [Aharony,
Kol, Yankielowicz ‘02]

e For f = 717273, can find the GDiffg that transforms Xgp to
known f3-deformed solution [Lunin, Maldacena ‘05]
Same analysis for deformations of any Sasaki—Einstein
background, e.g. TH1, etc.

29



Further deformations and counting
chiral operators




Chiral spectrum

What can we calculate using the ExS solutions? [Xgp] fixes
superpotential so should encode chiral spectrum of dual field
theory

chirals = {chiral operators} / {dW = 0}

Can count these graded by R-charge — Hilbert series

e Counting for Sasaki—-Einstein done by [Eager, Schmude,
Tachikawa ‘12]

e But we want to count for the deformed theory! Hard as
dWW = 0 defines a non-commutative algebra

30



Chiral spectrum

Equivalent to further deformations of X with no constraint on
charge, LgX # 3iX

chirals = {6X | 6X-K =0, 6y = O} / GDiff%

e Deformations of SCFT preserving N = 1 but not conformal

Counting 6X up to symmetries defines a cohomology since

Ec =% Tz, 21 g

Counting depends only on class [X] and can be graded by
charge under Lg

31



Example: five-sphere

Chiral spectrum around N = 4 theory = charge-k deformations
of Xsg, i.e. Xep(f) without restricting to k = 3
i

f="f_;.z"..

110k

2R, Lef = ikf

# charge -k deformations n, = # symmetric polynomials in
(z1,2%,23)

Ht) =) et = (
k

=1+ 3t+ 6t% + 1083 +

1
1-1t)3

e Matches Hilbert series of N = 4 SYM theory v
e General SE case counted by Kohn—Rossi cohomology

[Eager, Schmude, Tachikawa ‘12]
32



Chiral spectrum at Xgp

When deformed solution is generic (n := df # 0, “type one”)
[Xep] ~ e+,
cohomology reduces to “n conomology” [Tasker ‘21]
i>17/\/\p7”" i>77/\/\p+17'>k 9 .

fixed by Kohn—Rossi cohomology of original Sasaki—-Einstein

Result: universal expression for Hilbert series

H(t) =) mt = 1+ Zee (t) — [k =3 0,k > O]t**
k

in terms of “single-trace superconformal index” Zs: (t) 33



Example: deformed five-sphere

e.g. deformed S° with
f=fsz'2°2> + £, [(zl)3 +(2%)3 + (23)3]
Hilbert series is

3
H(t) = (1+2 =14+3t4+3t2 4283+ ...

in agreement with counting from cyclic homology of Sklyanin
algebra [Van den Bergh ‘94] v/

New results for deformations of regular SEs: T11, #n(S? x S3),
etc.

34



Background geometry naturally encodes superpotential of
dual SCFT

Can find supergravity solution for deformations up to GDiff‘”KC
action — large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators
Outlook

e Same/similar formalism for AdSs/AdS, in type Il /
M-theory

e New perspective on a-maximisation for supersymmetric
flux backgrounds

e Cohomology gives supersymmetric index

35



Marginal deformations,
holomorphic data & counting chirals



The pu, are a triplet of moment maps for the action of
GDiff ~ diffeo + gauge
Infinitesimally, V' € T'(E) ~ gdiff acts by
0Jo = Ly

Action preserves hyper-Kahler structure on space of J, so that

paV) = ~3easy | wsTat)



Marginal vs exactly marginal deformations

The field theory result of [Kol ‘02, Kol ‘10, Green et al. ‘10] that all
marginal deformations are exactly marginal unless there is a
global symmetry follows directly from moment map structure

e.g. AdSs x S°, (X, K) preserved by SU(3)

e Linearised deformation parameterised by f = ﬁjkzizfzk
e 14 (V) trivially zero for V € SU(3)
e Further moment map for SU(3) and quotient on {fj;}

psu(3) = fuP — %ﬂfklm?“’" =0

gives space of exactly marginal couplings



Flat X structures

X defines an (almost) exceptional complex structure via
[Tennyson, Waldram ‘21]

i _
SETE

which decomposes

Ec~LidL 18l
27 -6, +6_41+ 15

Integrability

ECS < LyWeTl(L) VYV,WeTl(Ly)



Flat X structures

What is missing for u = 0?7 Impose
LyX=0 VVe F(L_l)

where X: detT® Ec — L_q



General argument

Given solution (X,, K) to ES conditions, can show that full
solution exists:

1. Space of X with fixed K inherits invariant Kahler metric

2. uk(V) = ps(V) — [, c(K, K, V) is moment map for GDiff
with fixed K

3. (X4, K) matches exactly marginal solutions for
infinitesimal deformations

4. Open subset of stable points that lie on orbits of GDifffé
will intersect g = 0 — all (X,, K) are stable and thus can
be mapped to full solutions

5. Different X, flow to different solutions unless there are
isometries

6. X, related by isometries map to same solution under
GDiff('é, in agreement with field theory [Kol ‘02, Kol ‘10, Green
ot al ‘101



Physical interpretation

1. Fixing an orbit [X] ~ GDiff¢ - X fixes the superpotential W
of dual SCFT
2. LgX = 3iX fixes A = 3 — marginal deformation

3. Motion along orbit = renormalisation of Kahler potential



Example: S° again

Mesonic operators
tr(®...) < holomorphic functions f(z) on cone

e Marginal = L¢f = 3if
Cone is C(S°) = C3; functions are f = fjz'ZIz*
Recall

1., . .
X=e2"UoAQ~uoAQ uptoGDiffy

How do we deform this by f? Marginal for L.f = 3if



X, for deformed S° background

New family of solutions to holomorphic conditions
K=¢—onj, X, =e?D(df+vi(HoAQ)

with b’ € A2T linear and v/ quadratic in f

e In S® case and f cubic, reproduces second-order parts of
[Aharony, Kol, Yankielowicz ‘02]

o If f = 212223, can solve for explicit GDiff¢ to take solution
to exact g-deformed solution

e Works for deformation of any Sasaki—Einstein background
-TH etc.



Chiral spectrum

What can we calculate using this (partial) solution?

X, fixes superpotential so should encode space of mesonic
operators, i.e. chiral ring

chiral ring =
Of = Tijkl... tr((biq)jq)k(bl e )

Can count these graded by R-charge — Hilbert series

e Counting for Sasaki—Einstein point known [Eager, Schmude,
Tachikawa ‘12]

e But we want to count for the deformed theory!



Chiral spectrum

Counting 6X up to GDiff¢ defines a cohomology since
Ec =% T{X} %% Bt

Cohomology counts chiral operators (drop LgX = 3iX

condition) (X115 o)
ey =

chirals ~ 00X = LX)

Counting depends only on class of X, and [X] = [X,]



Calculating the cohomoloy

Easiest when the deformed solution is generic — df #£ 0
e Using GDiff¢, can then write X, as
X, = ePrN+a(Nyr
Cohomology then reduces to [Tasker ‘21]
S dFANPTE S dF A AT S

which can be computed using Kohn—-Rossi cohomology of
original Sasaki—Einstein



Counting chirals

Hilbert series

H(t) =) - mit = 1+ Zee (t) — [k =3 0,k > O]t*
k

e.g. deformed S° with
f=fsz'2°2> + £, {(zl)3 + (%) + (23)3]
Hilbert series is

(1+1t)3

H(t) =

in agreement with [Van den Bergh ‘94]



e.g. T4 — undeformed result

1+3/2

HO = =y

—1+4832 Lo +16t%/2 ...

For theory with generic deformed superpotential

14482428

H(t) 1 0

—1+482 138 +42/2 + .

e Matches explicit counting of gauge-invariant chiral field
modulo F-term relations up to k = 21/3 [Tasker ‘21]

¢ No previous calculation of cyclic homology / chirals for
deformed theory

New results for #n(S? x S3), etc.



Background geometry naturally encodes superpotential of
dual SCFT

Can find supergravity solution for deformations up to GDiff¢
action — large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators
Future
e Same/similar formalism for AdSs/AdS, in M-theory

e Cohomology gives supersymmetric index

e a-maximisation for generic supersymmetric backgrounds —
at~ [,c(K K K)
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