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Motivation & “The Question”



Set-up

Focus on type IIB solutions in 10d with 4d N = 1 SCFTs duals

• Canonical example

AdS5 × S5 ⇔ 4d N = 4 SYM

• Generalisation with all fluxes

AdS5 ×M ⇔ 4d N = 1 SCFT

Known solutions

• e.g. metric + F5 ⇒ M is Sasaki–Einstein
• Extra isometries: e.g. Pilch–Warner [Pilch, Warner ‘00]; β
deformation [Lunin, Maldacena ‘05]
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Questions

How do we find more general solutions?

• Isolated solutions? Hard

• Deformations of known solutions? This talk

What can we understand about these solutions without their
explicit form?

• What information might we have access to?

Inspiration / guidance from dual field theories
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4d N = 4 SYM in N = 1 language

Three chiral fields Φi with SU(3) global symmetry and
superpotential

W = ϵijk tr(ΦiΦjΦk)

F-terms dW = 0⇒ Φi commute: [Φ2,Φ3] = 0

Chiral ring↔ ring of holomorphic functions on C(S5) = C3:

Of = fi1...in tr(Φ
i1 . . .Φin) ↔ fi1...inz

i1 . . . zin

Hilbert series: graded count of single-trace operators modulo
F-term relations

H(t) =
∑
k

nktk =
1

(1− t)3
= 1+ 3t+ 6t2 + 10t3 + . . .
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Marginal deformations

e.g. N = 1 deformations of N = 4 SYM [Leigh, Strassler ‘95]

δW = fijk tr(ΦiΦjΦk)

• fijk ∈ 10C of SU(3) – 10 complex d.o.f.
• One-loop beta functions

fikl̄fjkl − 1
3δ

j
ifklmf̄

klm = 0

2C exactly marginal couplings give conformal manifold [Kol ‘02,
Kol ‘10, Green et al. ‘10]

Mc = {fijk} //SU(3) = {fijk} /SL(3,C)

5



Superpotential and chirals

We can choose

δW = fβ tr(Φ1Φ2Φ3) + fλ tr
[
(Φ1)3 + (Φ2)3 + (Φ3)3

]
F-term relations define non-commutative Sklyanin algebra
[Ginzburg ‘06]

Chiral operators for generic fβ and fλ counted by [Van den Bergh
‘94]

H(t) =
(1+ t)3

1− t3
= 1+ 3t+ 3t2 + 2t3 + . . .

• Counting not known for other N = 1 SCFTs
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Dual geometries?

What do we know about the dual supersymmetric geometries?
Not much

• fλ = 0: “β deformation”, preserves U(1)2 isometry, exact
supergravity solution known [Lunin, Maldacena ‘05]

• Generic case: no isometries other than U(1)R (and no
hope?)

• For S5, tour de force 3rd-order perturbative analysis
[Aharony, Kol, Yankielowicz ‘02], but full solution not known
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Dual geometries?

Understand the geometry dual to a generic N = 1 SCFT?

• If not the full geometry, maybe some partial data?

Count the chiral operators for the deformed theories from the
geometry?

• Want to count these around the deformed solutions

• Akin to counting Kaluza–Klein modes – even for explicitly
known solutions, this is hard...

But field theory seems so simple?
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Dual geometries?

Understand the geometry dual to a generic N = 1 SCFT?

• Integrable structures (X,K) in E6(6) × R+ gen. geometry
• Data of superpotentialW encoded by class [X]

Focus on those obtained as deformations of Sasaki–Einstein,
e.g. S5, T1,1, …

• X solves weaker “exceptional Sasaki” conditions
• Only “holomorphic” data is explicit, but can argue for
existence of full solution

Count the chiral operators for the deformed theories from the
geometry?

• Class [X] is sufficient to calculate holomorphic quantities,
e.g. Hilbert series
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Plan of talk

1. Review supersymmetry via generalised structures

2. Describe supergravity analogue of holomorphic data
encoded byW

3. Give holomorphic data that determines full solution up to
complexified diffeos + gauge

4. Compute chiral spectrum for deformed SCFTs from dual
geometry
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Supersymmetry & generalised
structures



Supersymmetric AdS5 backgrounds

Generic type IIB solution in 10d preserving 8 supercharges
with all fields (∆, τ,H, F3, F5,g)

ds210 = e2∆ds2(AdS5) + ds2(M)

Symmetries: GDiff ∼ diffeos+ p-form gauge

δBi = dλi, δC4 = dρ− 1
2ϵijdλ

i ∧ dBj

Supersymmetry: fermions = 0 and δϵ(fermions) = 0

∇mϵ+ (flux)m · ϵ = 0, γm∇mϵ+ flux · ϵ = 0

with ϵ = (ϵ1, ϵ2) stablised by USp(6) [Coimbra, Strickland-Constable,
Waldram ‘14] 11



Example: Sasaki–Einstein

e.g. M is Sasaki–Einstein

Geometry defined by nowhere-vanishing tensors σm, jmn and
Ωmn

• Defined by spinor bilinears: jmn ∼ ϵ̄γmnϵ, etc.

• Nowhere-vanishing vector ξ = g−1σ

Tensors satisfy algebraic conditions

ıξσ = 1, ıξ j = ıξΩ = j ∧ Ω = 0, j ∧ j = 1
2Ω ∧ Ω̄

Invariant under SU(2) ⊂ GL(5,R)
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Example: Sasaki–Einstein

Supersymmetry implies differential conditions on invariant
tensors

dσ = 2j, dΩ = 3iσ ∧ Ω,

F5 = dC4 = 4volg

ξ is a Killing vector (Reeb), Lξ preserves full solution

• ξ dual to U(1)R R-symmetry of N = 1 SCFT

• Supersymmetry⇒ equations of motion
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SUSY backgrounds with flux

Long history of using G-structures and generalised geometry
to analyse supersymmetric flux backgrounds

Generic AdS5 case: spinor ϵ defines integrable USp(6)
structure – “exceptional Sasaki–Einstein” [AA, Petrini, Waldram ‘16]

• Defined by pair (X,K) in E6(6) × R+ generalised geometry

X ∼ hyper d.o.f. K ∼ vector d.o.f.

Construct gen. tensors as reps of E6(6) × R+

GL(5,R) ⊂ E6(6) × R+
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K structure

Generalised vector VA parametrises diffeos + gauge
transformations (T ≡ TM, etc.)

27 ∼ E ' T⊕ 2T∗ ⊕ Λ3T∗ ⊕ 2Λ5T∗

VA = va + λia + ρabc + σiabcde

Invariant cubic form c on E

c(V,V,V) = −1
2 ıvρ ∧ ρ+ . . . ∈ detT∗

K structure (“vector-multiplet” structure) defined by

K ∈ E s.t. c(K,K,K) > 0

• Generalised vector invariant under F4(4) 15



X structure

Adjoint bundle

78 ∼ ad F ' 3R⊕ (T⊗ T∗)⊕ 2Λ2T∗ ⊕ 2Λ2T⊕ Λ4T∗ ⊕ Λ4T

RAB = · · ·+ Biab + · · ·+ Cabcd + . . .

X structure (“hypermultiplet” structure) defined by

X ∈ ad FC ⊗ detT∗ s.t. tr(XX̄) < 0

where X = κ(J1 + iJ2) defines su2 algebra

[Jα, Jβ] = 2κϵαβγJγ , tr(JαJβ) = −κ2δαβ , κ2 ∈ detT∗

• Complex adjoint tensor invariant under SU∗(6)
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Generalised structures

Spinor ϵ defines the pair (X,K)

E6(6) × R+

↙ ↘
(K ∈ E) F4(4) SU∗(6) (X ∈ detT∗ ⊗ adC)

↘ ↙
USp(6)
(X,K)

Intersect on USp(6) if compatible

X · K = 0

(X,K) specify all supergravity fields for solution
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Example: Sasaki–Einstein

Recall G-structure defined by (σ, j,Ω)

K structure defines “contact structure”

KSE = eC4(ξ − σ ∧ j) ∈ T⊕ Λ3T∗ ⊂ E

X structure defines “Cauchy–Riemann structure”

XSE = eC4−
1
4 iΩ∧Ω̄ni σ ∧ Ω ∈ 2Λ3T∗ ⊂ ad FC ⊗ detT∗

where
ni =

1√
im τ

(1, τ)i
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Supersymmetry

Symmetries act via Dorfman derivative

LV = Lv − (dλi + dρ) · ∼ diffeo+ gauge

Supersymmetry of the solution is equivalent to [AA, Petrini,
Waldram ‘16]

LKK = 0, LKX = 3iX,

µ+(V) = 0, µ3(V) = 3
∫
M
c(K,K,V) ∀V

• “Exceptional Sasaki–Einstein” (ESE)
• Generalised USp(6) structure with constant singlet torsion
• LK is action of U(1)R of dual SCFT

19



Exceptional Sasaki geometry



General solutions

Can we solve for the general supergravity solution dual to the
deformed field theories? Unlikely!

• Solving for generic solutions seems intractable – no
isometries; harder than Calabi–Yau

Instead, focus on holomorphic data for X

X · K = 0, LKK = 0, µ+ = 0, LKX = 3iX

• “Exceptional Sasaki” (ExS)

• X defines an exceptional complex structure [Tennyson,
Waldram ‘21]
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Moduli space

Let ZK be the space of X structures which are ExS for a fixed K

ZK = {X | µ+ = 0, LKK = 0, X · K = 0, LKX = 3iX}

Final SUSY condition is a moment map for GDiffK

µK := µ3 − 3
∫
c(K,K, · )

with moduli space

Mc '
{X ∈ ZK | µK = 0}

GDiffK
≡ ZK //GDiffK

• Mc is conformal manifold of dual SCFT [Kol ‘02, Kol ‘10,

Green et al. ‘10] 21



GIT quotient

ZK admits a GDiffK-invariant Kähler structure

Symplectic quotient equivalent to GIT quotient by complexified
action

Mc ' ZK //GDiffK ' ZK /GDiffCK

Final supersymmetry condition imposed by quotient

• In favourable case, given ExS structure (X,K), orbit of X
under GDiffCK intersects with µK = 0

Useful: find simpler ExS structure for complicated geometry
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Stability and existence

ZK

ESE: µK = 0

ExS

GDiffCK

Subtlety: only the subset of polystable points have orbits that
reach µK = 0
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Interpretation

X and K encode supergravity hyper- and vector-multiplet
degrees of freedom

• Hypers dual to chiral multiplets in field theory

Holomorphic data ofW encoded by X up to GDiffC

[X] = {X′ = Φ∗(X) | µ+ = 0, Φ ∈ GDiffC}

Full solution (X,K) may be out of reach, but can solve for a
simpler representative of [X]

• Any field theory quantity determined byW , e.g. chiral
spectrum, can be computed using any representative of [X]
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Explicit ExS solutions for deformed
geometries



Strategy

1. Start with known solution (X,K)

2. Deform to (XED,K) which solves weaker ExS conditions

3. Argue that XED can be GDiffCK-transformed to solve µK = 0,
i.e. a full supersymmetric solution

4. Use (XED,K) to calculate interesting quantities
characterising the dual deformed field theory

This is a completely general picture, but we’ll focus on cases
where the known solution is Sasaki–Einstein
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Deformations of Sasaki–Einstein

New exceptional Sasaki solution for deformed SE geometries

K = KSE

XED(f) = e−
1
4 iΩ∧Ω̄er

iA(f)er
irjε(f)

(
si(f)σ ∧ Ω+ df

)
where

• f is holomorphic and charge three, Lξf = 3if
• df ∼ β⌟(σ ∧ Ω) with bivector β ∼ (σ ∧ Ω̄)♯⌟df
• Two-form A(f) linear in f
• Function ε(f) quadratic in f
• KSE is unchanged

Geometry satisfies all susy conditions except µK = 0
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Are these stable?

Given these solutions to ExS conditions, we know:

1. There is an open subset of stable points around
XED(0) = XSE

2. XED(f) gives continuous one-parameter family of solutions
under f 7→ λf

3. Linearised XED(f)matches known infinitesimal solutions to
µK = 0 that necessarily lie in a stable subset [AA, Gabella,
Graña, Petrini, Waldram ‘16]

Implies that for small but finite f, all XED(f) are stable and can
be completed to full supersymmetric solutions

• Existence of the deformed supergravity backgrounds
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Physical interpretation

ZK

ESE: µK = 0

XED

GDiffCK

SE

• Orbit [XED] ' GDiffCK · XED fixes superpotentialW of dual
field theory

• LKX = 3iX fixes δW to be a marginal deformation (dual
theory is conformal)

• Motion along orbit ≡ renormalisation of Kähler potential 28



Example: deformations of five-sphere

Holomorphic charge-k functions descend from cone
C(S5) = C3

f = fi1...ikz
i1 . . . zik , Lξf = ikf

(XED,K) is exceptional Sasaki for any Lξf = 3if

• Explicit expressions for A(f) and ε(f)

• Reproduces second-order perturbative analysis of [Aharony,
Kol, Yankielowicz ‘02]

• For f = z1z2z3, can find the GDiffCK that transforms XED to
known β-deformed solution [Lunin, Maldacena ‘05]

Same analysis for deformations of any Sasaki–Einstein
background, e.g. T1,1, etc.
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Further deformations and counting
chiral operators



Chiral spectrum

What can we calculate using the ExS solutions? [XED] fixes
superpotential so should encode chiral spectrum of dual field
theory

chirals = {chiral operators} / {dW = 0}

Can count these graded by R-charge→ Hilbert series

• Counting for Sasaki–Einstein done by [Eager, Schmude,
Tachikawa ‘12]

• But we want to count for the deformed theory! Hard as
dW = 0 defines a non-commutative algebra
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Chiral spectrum

Equivalent to further deformations of X with no constraint on
charge, LKX 6= 3iX

chirals = {δX | δX · K = 0, δµ+ = 0} /GDiffCK

• Deformations of SCFT preserving N = 1 but not conformal

Counting δX up to symmetries defines a cohomology since

EC
L•X−−→ TZK

δµ+−−→ E∗C

Counting depends only on class [X] and can be graded by
charge under LK
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Example: five-sphere

Chiral spectrum around N = 4 theory ≡ charge-k deformations
of XSE, i.e. XED(f) without restricting to k = 3

f = fi1...ikz
i1 . . . zik , Lξf = ikf

# charge-k deformations nk ≡ # symmetric polynomials in
(z1, z2, z3)

H(t) =
∑
k

nktk =
1

(1− t)3
= 1+ 3t+ 6t2 + 10t3 + . . .

• Matches Hilbert series of N = 4 SYM theory 3

• General SE case counted by Kohn–Rossi cohomology
[Eager, Schmude, Tachikawa ‘12]
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Chiral spectrum at XED

When deformed solution is generic (η := df 6= 0, “type one”)

[XED] ' eb
i(f)+c4(f)η

cohomology reduces to “η cohomology” [Tasker ‘21]

. . .
d−→ η ∧ ΛpT∗ d−→ η ∧ Λp+1T∗ d−→ . . .

fixed by Kohn–Rossi cohomology of original Sasaki–Einstein

Result: universal expression for Hilbert series

H(t) ≡
∑
k

nktk = 1+ Is.t.(t)− [k ≡3 0, k > 0]t2k

in terms of “single-trace superconformal index” Is.t.(t) 33



Example: deformed five-sphere

e.g. deformed S5 with

f = fβz1z2z3 + fλ
[
(z1)3 + (z2)3 + (z3)3

]
Hilbert series is

H(t) =
(1+ t)3

1− t3
= 1+ 3t+ 3t2 + 2t3 + . . .

in agreement with counting from cyclic homology of Sklyanin
algebra [Van den Bergh ‘94] 3

New results for deformations of regular SEs: T1,1, #n(S2 × S3),
etc.
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Summary

Background geometry naturally encodes superpotential of
dual SCFT

Can find supergravity solution for deformations up to GDiffCK
action – large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators

Outlook

• Same/similar formalism for AdS5/AdS4 in type II /
M-theory

• New perspective on a-maximisation for supersymmetric
flux backgrounds

• Cohomology gives supersymmetric index
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Marginal deformations,
holomorphic data & counting chirals



Moment maps

The µα are a triplet of moment maps for the action of

GDiff ' diffeo+ gauge

Infinitesimally, V ∈ Γ(E) ' gdiff acts by

δJα = LVJα

Action preserves hyper-Kähler structure on space of Jα so that

µα(V) = −1
2ϵαβγ

∫
M
tr(JβLVJγ)



Marginal vs exactly marginal deformations

The field theory result of [Kol ‘02, Kol ‘10, Green et al. ‘10] that all
marginal deformations are exactly marginal unless there is a
global symmetry follows directly from moment map structure

e.g. AdS5 × S5, (X,K) preserved by SU(3)

• Linearised deformation parameterised by f = fijkzizjzk

• µα(V) trivially zero for V ∈ SU(3)
• Further moment map for SU(3) and quotient on {fijk}

µSU(3) ≡ fikl̄fjkl − 1
3δ

j
ifklmf̄

klm = 0

gives space of exactly marginal couplings



Flat X structures

X defines an (almost) exceptional complex structure via
[Tennyson, Waldram ‘21]

J ∼ i
tr(XX̄)

[X, X̄]

which decomposes

EC ' L1 ⊕ L−1 ⊕ L0
27→ 61 + 6−1 + 150

Integrability

ECS ⇔ LVW ∈ Γ(L1) ∀V,W ∈ Γ(L1)



Flat X structures

What is missing for µ+ = 0? Impose

LVX = 0 ∀V ∈ Γ(L−1)

where X : detT⊗ EC → L−1



General argument

Given solution (X∗,K) to ES conditions, can show that full
solution exists:

1. Space of X with fixed K inherits invariant Kähler metric
2. µK(V) = µ3(V)−

∫
M c(K,K,V) is moment map for GDiff

with fixed K
3. (X∗,K) matches exactly marginal solutions for
infinitesimal deformations

4. Open subset of stable points that lie on orbits of GDiffKC
will intersect µK = 0 – all (X∗,K) are stable and thus can
be mapped to full solutions

5. Different X∗ flow to different solutions unless there are
isometries

6. X∗ related by isometries map to same solution under
GDiffKC, in agreement with field theory [Kol ‘02, Kol ‘10, Green
et al. ‘10]



Physical interpretation

µK = 0

X∗(f)

GDiffC

{X}

1. Fixing an orbit [X] ' GDiffC · X fixes the superpotentialW
of dual SCFT

2. LKX = 3iX fixes ∆ = 3 – marginal deformation

3. Motion along orbit ≡ renormalisation of Kähler potential



Example: S5 again

Mesonic operators
tr(Φ . . . ) ↔ holomorphic functions f(z) on cone

• Marginal⇒ Lξf = 3if

Cone is C(S5) = C3; functions are f = fijkzizjzk

Recall

X = e
1
2 i j

2
ui σ ∧ Ω ∼ ui σ ∧ Ω up to GDiffC

How do we deform this by f? Marginal for Lξf = 3if



X∗ for deformed S5 background

New family of solutions to holomorphic conditions

K = ξ − σ ∧ j, X∗ = eb
i(f)(df+ vi(f)σ ∧ Ω)

with bi ∈ Λ2T∗C linear and v
i quadratic in f

• In S5 case and f cubic, reproduces second-order parts of
[Aharony, Kol, Yankielowicz ‘02]

• If f = z1z2z3, can solve for explicit GDiffC to take solution
to exact β-deformed solution

• Works for deformation of any Sasaki–Einstein background
– T1,1, etc.



Chiral spectrum

What can we calculate using this (partial) solution?

X∗ fixes superpotential so should encode space of mesonic
operators, i.e. chiral ring

chiral ring =

Of = fijkl... tr(ΦiΦjΦkΦl . . . )

Can count these graded by R-charge→ Hilbert series

• Counting for Sasaki–Einstein point known [Eager, Schmude,
Tachikawa ‘12]

• But we want to count for the deformed theory!



Chiral spectrum

Counting δX up to GDiffC defines a cohomology since

EC
L•X−−→ T{X} δµ+−−→ E∗C

Cohomology counts chiral operators (drop LKX = 3iX
condition)

chirals ∼ {δX | δµ+ = 0}
{δX = LVX}

Counting depends only on class of X∗ and [X] = [X∗]



Calculating the cohomoloy

Easiest when the deformed solution is generic – df 6= 0

• Using GDiffC, can then write X∗ as

X∗ = eb̃
i(τ,f)+c4(τ,f)df

Cohomology then reduces to [Tasker ‘21]

. . .
d−→ df ∧ ΛpT∗C

d−→ df ∧ Λp+1T∗C
d−→ . . .

which can be computed using Kohn–Rossi cohomology of
original Sasaki–Einstein



Counting chirals

Hilbert series

H(t) ≡
∑
k

nktk = 1+ Is.t.(t)− [k ≡3 0, k > 0]t2k

e.g. deformed S5 with

f = fβz1z2z3 + fλ
[
(z1)3 + (z2)3 + (z3)3

]
Hilbert series is

H(t) =
(1+ t)3

1− t3
= 1+ 3t+ 3t2 + 2t3 + . . .

in agreement with [Van den Bergh ‘94]



New results

e.g. T1,1 – undeformed result

H(t) =
1+ t3/2

(1− t3/2)3
= 1+ 4t3/2 + 9t3 + 16t9/2 . . .

For theory with generic deformed superpotential

H(t) =
1+ 4t3/2 + 2t3

1− t3
= 1+ 4t3/2 + 3t3 + 4t9/2 + . . .

• Matches explicit counting of gauge-invariant chiral field
modulo F-term relations up to k = 21/3 [Tasker ‘21]

• No previous calculation of cyclic homology / chirals for
deformed theory

New results for #n(S2 × S3), etc.



Summary

Background geometry naturally encodes superpotential of
dual SCFT

Can find supergravity solution for deformations up to GDiffC
action – large class of new supergravity duals

Class of structure [X] determines spectrum of chiral operators

Future

• Same/similar formalism for AdS5/AdS4 in M-theory

• Cohomology gives supersymmetric index

• a-maximisation for generic supersymmetric backgrounds –
a−1 ∼

∫
M c(K,K,K)
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