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Overview

Lattice gauge theory provides a powerful tool for probing strongly
coupled systems and critical phenomena

Monte Carlo and neural network methods provide a way to study these
theories

Gauge-invariant neural networks can model the wavefunction of these
systems
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Neural-network quantum states

ZN lattice gauge theory

Lattice gauge-equivariant CNNs

Application: Z2 gauge theory
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Neural-network quantum states



General problem

How do we find the wavefunction for interacting many-body quantum
systems? For gauge theories, like the Standard Model?

• Wavefunction gives complete description of quantum state⇒ can
compute expectation values, etc.

Generic quantum state storage requires exponential amount of
information

• Physical, low-energy states often require much less information to
encode⇒ amenable to classical computation

Focus on ground-state wavefunctions
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Two problems

Challenges: storage of wavefunction and computing expectations values

e.g. system of N spins, exact wavefunction gives map

Ψ: ZN
2 → C,

with exponentially large Hilbert space: dim = 2N

• Compress Ψ ⇒ variational ansatz

Exponentially large number of operations to compute expectation values

〈H〉 =
∑
σ,σ′

Ψ(σ)∗〈σ|H|σ′〉Ψ(σ′)

• Reduce # operations by Monte Carlo sampling 5



Neural network quantum states

Variational Monte Carlo has long history...

[Carleo, Troyer ‘16] introduced a new kind of variational ansatz: neural
network quantum state (NNQS)

• Wavefunction Ψ represented by neural network with hidden layers
• Parameters (weights) of ansatz optimised by variational Monte Carlo
+ stochastic gradient descent to minimise 〈H〉

State-of-the-art results for ground-state approximation and time
evolution of quantum systems
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Some applications

Ground-state approximation

• Ising model [Carleo, Troyer ‘17;…],
• J1-J2 model [Nomura ‘20; Chen, Heyl ‘23;…]
• Continuous models [Pescia et al. ‘22; Lovato et al. ‘22; Zhao et al. ‘22,…]
• Transformers [Viteritti et al. ‘23]

Unitary evolution [Carleo at al. ‘17; Yaun et al. 19,…], excited states, state
reconstruction, finite temperature, open system, and much more!
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This talk

Combine gauge-invariant NNQS with variational
Monte Carlo to model lattice gauge theories

Focus on discrete ZN gauge theories: proof-of-concept and (relatively)
accurate predictions
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ZN lattice gauge theory



ZN lattice gauge theory in 2+ 1d

Hamiltonian approach: space discretised, time continuous

• Spatial L× L lattice with periodic boundary conditions
• Gauge field degrees of freedom live on links between lattice sites

Clock Qℓ and shift Pℓ operators on link ℓ satisfy a ZN algebra

P†
ℓPℓ = Q†

ℓQℓ = 1, PN
ℓ = QN

ℓ = 1,
P†
ℓQℓPℓ = e2πi/NQℓ.
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ZN lattice gauge theory in 2+ 1d

States |q〉ℓ span Hilbert space on link ℓ are eigenstates of clock operator:

Qℓ|q〉ℓ = e2πiqℓ/N|q〉ℓ, qℓ ∈ {0, . . . ,N− 1}.

Shift operator is periodic lowering operator: Pℓ|q〉ℓ = |q− 1〉ℓ

A configuration of the 2L2 links is given by a choice of phases
U = {Ux,µ} ∈ C2L2 , where x denotes a lattice site and µ ∈ {x̂, ŷ} specifies
the link

Ux,x̂

Ux+x̂,ŷ

Ux+ŷ,x̂

Ux,ŷ

x
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ZN lattice gauge theory in 2+ 1d

Under a gauge transformation Ω, the link variables transform non-locally

Ux,µ 7→ TΩUx,µ = ΩxUx,µΩ
†
x+µ.

Instead, the locally transforming data is encoded by (untraced) Wilson
loops

Ux,µν ≡ Ux,µUx+µ,νU†
x+ν,µU†

x,ν .

Under gauge transformation

Ux,µν 7→ TΩUx,µν = ΩxUx,µνΩ
†
x.
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ZN lattice gauge theory in 2+ 1d

Hamiltonian of pure ZN gauge theory

H =
g2

2
∑
ℓ

[
1− Pℓ

]
+

1
2g2

∑
ℓi∈�

[
1−Q†

ℓ1
Q†
ℓ2
Qℓ3Qℓ4

]
+ h.c.

• Coupling g
• Electric term – sum over links ℓ
• Magnetic term – sum over 1× 1 plaquettes �

Gauss’ law encoded by vertex operators Θx:

Θx = Px,x̂Px,ŷP†
x−x̂,x̂P†

x−ŷ,ŷ.

Local gauge invariance from [Θx,H] = 0
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ZN lattice gauge theory in 2+ 1d

At fixed time, a wavefunction Ψ maps a configuration of phases U to a
complex number

Ψ: C2L2 → C,
U 7→Ψ(U).

We seek the ground-state wavefunction Ψ0

• H is time independent⇒ Ψ0 is time independent
• Restrict to Θx = 1 sector⇒ pure gauge theory
• Ground state is gauge invariant⇒ Ψ0(TΩU) = Ψ0(U)
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Lattice gauge-equivariant CNNs



Review

Lattice gauge-equivariant convolutional neural networks (LGE-CNNs)
introduced by [Favoni et al. ‘20]

• Built from gauge-equivariant convolutions and multiplications
• Can approximate arbitrary gauge invariant (or equivariant) functions
of a lattice system

Originally used for supervised learning (traced Wilson loops and
topological charge density)

Alternative gauge-equivariant networks constructed by [Luo et al. ‘22] for ZN

and [Luo et al. ‘22] for U(1)
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Network structure

At each layer, keep track of link-like variables U and loop-like variablesW

U = {Ux,µ}, W = {Wx,i},

where i is a channel index – can associate multipleW elements to the
same lattice site x

• e.g. 1× 1 plaquette variables Ux,µν = Ux,µUx+µ,νU†
x+ν,µU

†
x,ν

• LGE-CNN constructs more general objects that transform like these

Each layer of an LGE-CNN acts on the pair (U ,W)

• Input to network is the set of link variables U , whileW = ∅ initially
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Plaquette layer

First layer generates 1× 1 plaquettes from links

Plaq : Ux,µ 7→ Ux,µν

and stores them inW

• Keep those with positive orientation
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Equivariant convolution bilinear layer

Starting fromW = {Wi,x}, construct new objects by parallel translating

W′
x,i = Ux,KµWx+Kµ,iU†

x,Kµ,

by K steps in µ direction, and add these toW ′

W ′ =
{
Wi,x, Ux,x̂Wx+x̂,iU†

x,x̂, . . .
}

where

• µ ∈ {x̂, ŷ} runs over lattice directions
• K ∈ {0, . . . , kernel size} determines the maximum distance to
translateW elements
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Equivariant convolution bilinear layer

Extend bothW andW ′ by hermitian conjugate and identity elements, e.g.

W 7→ {Wi,x,W†
i,x,1x},

then multiply all local terms

(W ,W ′) 7→ W′′
x,i =

∑
jk

αijkWx,jW′
x,k,

where

• i ∈ {1, . . . ,Nout} runs over number of output channels
• αijk ∈ C are trainable weights
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Equivariant convolution bilinear layer

Combine these steps into a single layer

L-CB : (U ,W) 7→ {W′′
x,i}

where the layer is specified by a choice of output channels and kernel size
(Nout,K)

• Allows for a bias and acts as a residual layer

Stacking L-CB layers constructs arbitrary untraced Wilson loops [Favoni et
al. ‘20]

• Plaq gives all 1× 1 Wilson loops
• Single L-CB output has linear combinations of 1× 2 and 2× 1 loops,
plus original 1× 1 plaquettes and their squares
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Network structure

Output of network taken to be logΨ:

logΨ ≡ Dense ◦ Global Pooling ◦ Trace ◦ . . . ◦ L-CB ◦ Plaq

• Complex weights: output can encode non-trivial phase structure
• Translation invariant

Implemented using NetKet 3 [Vicentini et al. ‘21] and JAX/Flax

• Training minimises 〈H〉 with respect to network weights via stochastic
gradient descent

• Hilbert space too large to sum over exactly, compute expectation
values etc. using sample of field configurations, chosen by local
Metropolis algorithm
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Some practical comments

NetKet includes preconditioning of the gradient

• Use stochastic reconfiguration in all cases [Sorella et al. ‘07]

Use transfer learning when scanning over coupling

• Work from large to small coupling

Bilinear structure can easily lead to vanishing / exploding gradients –
important to initialise network properly for deep networks

• No analytic results (e.g. Xavier initialisation) – find empirically, tune
weights layer-by-layer to fix variance (c.f. LSUV [Mishkin, Matas ‘15])

Networks with 2 to 10 L-CB layers (500 to 15000 params), trained using
single V100
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Application: Z2 gauge theory



Z2 gauge theory

For Z2, clock/shift are simply Pauli operators: Q ≡ Z and P ≡ X

By duality, equivalent to classical Ising model in 3d

• In universality class of Ising CFT3 [Wilson, Fisher ‘72]

Phase transition for spontaneous breaking of Z(1)
2 emergent one-form

symmetry

g
gc

deconfined phase
〈W〉 ∼ perimeter law

confined phase
〈W〉 ∼ area law
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Ground-state energy
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Figure 1: Energy 〈H〉 for on a 2× 2 lattice as a function of coupling g. Networks
trained for up to 500 iterations with 4096 MC samples per step. Training stopped
once the variance, VarH = 〈H2〉 − 〈H〉2, stabilised to a value of 0.0001 or less.
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Ground-state energy
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Figure 2: Expectation value 〈H〉 for Z2 gauge theory for varying lattice sizes as a
function of coupling g, focused on the region around the critical coupling.
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Locating the phase transition

Most accurate identification comes from dual spin system [Blöte, Deng ‘02]

• Z2 gauge theory↔ TFIM↔ limit of classical Ising model in 3d

gc = 0.757051

Previous work on gauge-equivariant NNs [Luo et al. ‘20]

• String tension on 12× 12 lattice

gc ≈ 0.7

We search for the phase transition – diagnosed by order and disorder
parameters
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Order parameter

Wilson loop of Z operators, WΓ =
∏

Γ Z,
along closed path Γ on lattice [Wegner ‘71;

Kogut ‘79]

• In deconfined phase, 〈W〉 decays with
perimeter law

• In confined phase, 〈W〉 decays with
area law
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Disorder parameter

‘t Hooft string ofX operators, T =
∏

Γ̃ X, along
open path Γ̃ between two points on dual lat-
tice
• 〈T〉 independent of path due to Gauss’
law

• In deconfined phase, creates a pair of
quasi-particles (magnetic monopoles) –
〈T〉 decays exponentially with distance

• In confined phase, 〈T〉 independent of
distance – “monopoles condensed”
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Identifying the critical coupling

Ordered phase Disordered phase

g < gc g > gc
〈W〉 ∼ perimeter law 〈W〉 ∼ area law

〈T〉 ∼ exp. decay with distance 〈T〉 ∼ constant
electric flux lines condensed mag. monopoles condensed

Z(1)
2 broken Z(1)

2 preserved
“deconfined” “confined”

[Rayhaun, Williamson ‘23]

To identify the critical coupling, we look for signs of the confinement
transition
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Order parameter
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Figure 3: Lattice average of the 1-plaquette Wilson loop (magnetic flux energy,
B =

∑
�W�). The dotted line indicates the expected critical coupling at

gc = 0.757. 29



Confinement

Classic signal of confinement: Wilson loops have area-law decay

Generically
〈WΓ〉 ∼ exp(−κPΓ − σAΓ),

where σ is string tension – zero in deconfined phase and positive in
confined phase

• Not a “clean” diagnostic – there is always a perimeter-law contribution

Can estimate σ via Creutz ratio [Creutz ‘80]

σ ≈ − log
〈Wl×l〉〈W(l−1)×(l−1)〉
〈W(l−1)×l〉〈Wl×(l−1)〉
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String tension
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Figure 4: String tension estimated from Creutz ratio for l = 2 on a 6× 6 lattice.
For g > gc, Wilson loops decay rapidly with size. Estimate of σ challenging with
Monte Carlo sampling – ratio of very small numbers. 31



Identifying the critical coupling

Ordered phase Disordered phase

g < gc g > gc
〈W〉 ∼ perimeter law 〈W〉 ∼ area law

〈T〉 ∼ exp. decay with distance 〈T〉 ∼ constant
electric flux lines condensed mag. monopoles condensed

Z(1)
2 broken Z(1)

2 preserved
“deconfined” “confined”

[Rayhaun, Williamson ‘23]

Cleaner to look at decay of ‘t Hooft string
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Disorder parameter
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Figure 5: Lattice average of the ‘t Hooft string operator near the critical point for
L = 10. Distance L/2 = 5 between ends of ‘t Hooft string.
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A more accurate estimate

For a continuous phase transition, can identify critical point using the
Binder cumulant of the order parameter [Binder ‘81]

U(W) = 1− 〈W4〉c
3〈W2〉2c

• At leading order in L−1, finite-scaling theory predicts that the Binder
cumulant has a universal value for all lattice sizes at the critical point

• Implies that the curves for different L must cross at the critical
coupling

• Next-order terms in L−1 lead to a small offset
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Binder cumulant
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Figure 6: Binder cumulant U(W) of 1-plaquette Wilson loops. The dotted yellow
line indicates is the critical coupling at gc = 0.757.
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Extrapolation

To extrapolate to L → ∞ limit, use BST extrapolation [Bulirsch, Stoer ‘64;
Henkel, Patkos ‘87; Henkel, Schütz ‘88]

• Look at pairs (L,gcrossing):

(2,0.767512) (4,0.768072) (6,0.760667) (8,0.758856)

• Construct a sequence which converges to L → ∞ limit more rapidly

Extrapolation predicts
gc = 0.756(2)

• Compare with 0.757051 from dual spin model
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Curve collapse

Near to the critical point, leading-order finite-scaling theory predicts
observables are functions of

g̃ = L1/ν(g− gc)/gc

e.g. ‘t Hooft string 〈T〉 should scale as

〈T〉 = L−β/νt(g̃)

• ν and β are correlation length and magnetisation critical exponents

Curve collapse: plot of Lβ/v〈T〉 vs g̃ independent of L near to g̃ = 0

• Extract gc, β and ν by minimising distance between curves 37



Collapse of disorder parameter
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Figure 7: Lattice average of the ‘t Hooft string for varying lattice size. Distance
L/2 between ends of ‘t Hooft string.
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Critical exponents and the Ising CFT

Ising: [Blöte, Deng ‘02]

gc = 0.757051 ν = 0.629971 β = 0.326419

Curve collapse:

gc ≈ 0.766 ν ≈ 0.610 β ≈ 0.320

Only includes leading-order L−1 behaviour (worse than BST extrapolation)

• Larger lattice sizes should give more accurate results as next-order
corrections in L−1 suppressed (Ising data for L = 2, . . . ,48)
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Z2 vs Z3: a first-order phase transition?
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Figure 8: Derivative of 〈H〉/L2 with respect to g2 for Z2 (left) and Z3 (right).

First-order phase transition⇒ derivative of energy is discontinuous

• Finite correlation length, but can be much larger than achievable
system size [Binder ‘81]
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Summary

Neural-network quantum states are a powerful tool for studying
interacting quantum systems

Gauge-equivariant CNNs extend this tool to lattice gauge theories

Provide accurate and flexible approximation of ground state for ZN

theories

Can be used to probe phase transitions, critical exponents, and more
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Future directions

Deeper networks

• NetKet and JAX scale well with number of GPUs
• Phase vs amplitude learning?

Symmetries: time reversal, reflection, etc.

Extension to U(1) and SU(N) (in progress)

• LGE-CNN structure remains the same
• How does complexity scale for non-abelian groups?

Include matter fields at lattice sites

• Lattice QED/QCD?
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Ground-state energy
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Figure 9: Expectation value 〈H〉 for Z3 gauge theory on a 2× 2 lattice as a
function of coupling g. The solid teal line is the exact diagonalization result,
computed using NetKet. The inset shows the difference between the ground
state energies calculated using the neural network and exact diagonalisation.



Ground-state energy
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Figure 10: Expectation value 〈H〉 for Z3 gauge theory for varying lattice sizes as a
function of coupling g, focused on the region around the critical coupling.



Variational Monte Carlo with NetKet

Given a state |ψ〉, one can compute 〈Ô〉 via

〈Ô〉 = 〈ψ|Ô|ψ〉 =
∑
σ

|ψ(σ)|2
∑
η

〈σ|Ô|η〉〈η|ψ〉
〈σ|ψ〉

= Eσ∼|ψ(σ)|2
[
Eloc(σ)

]
,

where σ and η are gauge field configurations, Eσ∼|ψ(σ)|2 means take the
expectation value over σ, with σ distributed according to the PDF |ψ(σ)|2,
and we have defined the “local energy”

Eloc(σ) =
∑
η

〈σ|Ô|η〉〈η|ψ〉
〈σ|ψ〉

.



Variational Monte Carlo with NetKet

In order to evaluate this expectation value via variational Monte Carlo, one
needs to:

1. Restrict to a finite sum over σ by sampling the PDF, |ψ(σ)|2. This is
provided by the Monte Carlo variational state interface of NetKet.

2. Compute the “connected elements” for the samples {σ}, i.e. those for
which 〈σ|Ô|η〉 6= 0. For each σ, one can restrict to a (usually much)
smaller set of configurations, labelled by {η}. Then compute the
matrix elements themselves.

3. Calculate the local energies Eloc(σ) given the matrix elements, the
sets {σ} and {η}, and the state |ψ〉. Again, this implementation is
provided by NetKet.

4. The statistical average of the local energies weighted by |ψ(σ)|2.



Stochastic reconfiguration

Stochastic gradient descent with a non-trivial weight-space metric,
c.f. imaginary time evolution [Sorella et al. ‘07]

(1− ϵH)|Ψ〉 ≈ e−ϵH|Ψ〉 = e−ϵH
∑
i=0

ci|i〉 = e−ϵE0c0|0〉+ e−ϵE1c1|1〉+ . . .

• Iterating this will project a trial wavefunction onto the ground state

Construct a weight update rule so that the updated state is (1− ϵH)|Ψ〉

θα 7→ θα − η(S−1)αβRβ

where

Oα|ψ〉 = ∂α|ψ〉, Rα = 〈O†
αH〉 − 〈O†

α〉〈H〉, Sαβ = 〈O†
αOβ〉 − 〈O†

α〉〈Oβ〉
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