

Discrete lattice gauge theory via neural-network quantum states

Anthony Ashmore

LPTHE, Sorbonne Université

Strings, Fields and Deep Learning - 16th January 2024

Collaborators

Anuj Apte

Clay Córdova

Tzu-Chen (Jimmy) Huang

Lattice gauge theory provides a powerful tool for probing strongly coupled systems and critical phenomena

Monte Carlo and neural network methods provide a way to study these theories

Gauge-invariant neural networks can model the wavefunction of these systems

Ground-state energy

1st vs 2nd order

Neural-network quantum states

 \mathbb{Z}_N lattice gauge theory

Lattice gauge-equivariant CNNs

Application: \mathbb{Z}_2 gauge theory

Neural-network quantum states

How do we find the wavefunction for interacting many-body quantum systems? For gauge theories, like the Standard Model?

 Wavefunction gives complete description of quantum state ⇒ can compute expectation values, etc.

Generic quantum state storage requires exponential amount of information

 Physical, low-energy states often require much less information to encode ⇒ amenable to classical computation

Focus on ground-state wavefunctions

Two problems

Challenges: storage of wavefunction and computing expectations values e.g. system of *N* spins, exact wavefunction gives map

$$\Psi\colon\mathbb{Z}_{2}^{N}\rightarrow\mathbb{C},$$

with exponentially large Hilbert space: dim = 2^N

• Compress $\Psi \Rightarrow$ variational ansatz

Exponentially large number of operations to compute expectation values

$$\langle H \rangle = \sum_{\sigma,\sigma'} \Psi(\sigma)^* \langle \sigma | H | \sigma' \rangle \Psi(\sigma')$$

• Reduce # operations by Monte Carlo sampling

Variational Monte Carlo has long history...

[Carleo, Troyer '16] introduced a new kind of variational ansatz: neural network quantum state (NNQS)

- Wavefunction $\boldsymbol{\Psi}$ represented by neural network with hidden layers
- Parameters (weights) of ansatz optimised by variational Monte Carlo + stochastic gradient descent to minimise $\langle H \rangle$

State-of-the-art results for ground-state approximation and time evolution of quantum systems

Ground-state approximation

- Ising model [Carleo, Troyer '17;...],
- *J*₁-*J*₂ model [Nomura '20; Chen, Heyl '23;...]
- Continuous models [Pescia et al. '22; Lovato et al. '22; Zhao et al. '22,...]
- Transformers [Viteritti et al. '23]

Unitary evolution [Carleo at al. '17; Yaun et al. 19,...], excited states, state reconstruction, finite temperature, open system, and much more!

Combine gauge-invariant NNQS with variational Monte Carlo to model lattice gauge theories

Focus on discrete \mathbb{Z}_N gauge theories: proof-of-concept and (relatively) accurate predictions

\mathbb{Z}_N lattice gauge theory

Hamiltonian approach: space discretised, time continuous

- Spatial $L \times L$ lattice with periodic boundary conditions
- Gauge field degrees of freedom live on links between lattice sites

Clock Q_ℓ and shift P_ℓ operators on link ℓ satisfy a \mathbb{Z}_N algebra

$$\begin{split} \boldsymbol{P}_{\ell}^{\dagger}\boldsymbol{P}_{\ell} &= \boldsymbol{Q}_{\ell}^{\dagger}\boldsymbol{Q}_{\ell} = \boldsymbol{1}, \quad \boldsymbol{P}_{\ell}^{N} = \boldsymbol{Q}_{\ell}^{N} = \boldsymbol{1}, \\ \boldsymbol{P}_{\ell}^{\dagger}\boldsymbol{Q}_{\ell}\boldsymbol{P}_{\ell} &= \boldsymbol{e}^{2\pi i/N}\boldsymbol{Q}_{\ell}. \end{split}$$

\mathbb{Z}_N lattice gauge theory in 2 + 1d

States $|q\rangle_{\ell}$ span Hilbert space on link ℓ are eigenstates of clock operator:

$$Q_{\ell}|q\rangle_{\ell}=e^{2\pi i q_{\ell}/N}|q\rangle_{\ell}, \qquad q_{\ell}\in\{0,\ldots,N-1\}.$$

Shift operator is periodic lowering operator: $P_\ell |q
angle_\ell = |q-1
angle_\ell$

A configuration of the $2L^2$ links is given by a choice of phases $\mathcal{U} = \{U_{x,\mu}\} \in \mathbb{C}^{2L^2}$, where x denotes a lattice site and $\mu \in \{\hat{x}, \hat{y}\}$ specifies the link

\mathbb{Z}_N lattice gauge theory in 2 + 1d

Under a gauge transformation Ω , the link variables transform non-locally

$$U_{\mathsf{x},\mu}\mapsto T_\Omega U_{\mathsf{x},\mu}=\Omega_\mathsf{x} U_{\mathsf{x},\mu}\Omega^\dagger_{\mathsf{x}+\mu}.$$

Instead, the locally transforming data is encoded by (untraced) Wilson loops

$$U_{\mathrm{x},\mu
u}\equiv U_{\mathrm{x},\mu}U_{\mathrm{x}+\mu,
u}U_{\mathrm{x}+
u,\mu}^{\dagger}U_{\mathrm{x},
u}^{\dagger}$$

Under gauge transformation

$$U_{\mathrm{x},\mu
u}\mapsto \mathcal{T}_{\Omega}U_{\mathrm{x},\mu
u}=\Omega_{\mathrm{x}}U_{\mathrm{x},\mu
u}\Omega_{\mathrm{x}}^{\dagger}.$$

\mathbb{Z}_N lattice gauge theory in 2 + 1d

Hamiltonian of pure \mathbb{Z}_N gauge theory

$$H = \frac{g^2}{2} \sum_{\ell} \left[1 - P_{\ell} \right] + \frac{1}{2g^2} \sum_{\ell_i \in \Box} \left[1 - Q_{\ell_1}^{\dagger} Q_{\ell_2}^{\dagger} Q_{\ell_3} Q_{\ell_4} \right] + \text{h.c.}$$

- Coupling g
- Electric term sum over links ℓ
- Magnetic term sum over 1 × 1 plaquettes □

Gauss' law encoded by vertex operators Θ_x :

$$\Theta_x = P_{x,\hat{x}} P_{x,\hat{y}} P^{\dagger}_{x-\hat{x},\hat{x}} P^{\dagger}_{x-\hat{y},\hat{y}}.$$

Local gauge invariance from $[\Theta_x, H] = 0$

At fixed time, a wavefunction Ψ maps a configuration of phases ${\cal U}$ to a complex number

$$\Psi \colon \mathbb{C}^{2L^2} \to \mathbb{C},$$

 $\mathcal{U} \mapsto \Psi(\mathcal{U}).$

We seek the ground-state wavefunction Ψ_0

- *H* is time independent $\Rightarrow \Psi_0$ is time independent
- Restrict to $\Theta_x = 1$ sector \Rightarrow pure gauge theory
- Ground state is gauge invariant $\Rightarrow \Psi_0(T_\Omega U) = \Psi_0(U)$

Lattice gauge-equivariant CNNs

Lattice gauge-equivariant convolutional neural networks (LGE-CNNs) introduced by [Favoni et al. '20]

- Built from gauge-equivariant convolutions and multiplications
- Can approximate arbitrary gauge invariant (or equivariant) functions of a lattice system

Originally used for supervised learning (traced Wilson loops and topological charge density)

Alternative gauge-equivariant networks constructed by [Luo et al. '22] for \mathbb{Z}_N and [Luo et al. '22] for U(1)

At each layer, keep track of link-like variables ${\mathcal U}$ and loop-like variables ${\mathcal W}$

$$\mathcal{U} = \{U_{x,\mu}\}, \qquad \mathcal{W} = \{W_{x,i}\},$$

where *i* is a channel index – can associate multiple \mathcal{W} elements to the same lattice site *x*

- e.g. 1 × 1 plaquette variables $U_{x,\mu\nu} = U_{x,\mu}U_{x+\mu,\nu}U_{x+\nu,\mu}^{\dagger}U_{x,\nu}^{\dagger}$
- LGE-CNN constructs more general objects that transform like these

Each layer of an LGE-CNN acts on the pair $(\mathcal{U}, \mathcal{W})$

• Input to network is the set of link variables \mathcal{U} , while $\mathcal{W} = \emptyset$ initially

First layer generates 1×1 plaquettes from links

 $\mathbf{Plaq} \colon U_{x,\mu} \mapsto U_{x,\mu\nu}$

and stores them in $\ensuremath{\mathcal{W}}$

• Keep those with positive orientation

Equivariant convolution bilinear layer

Starting from $W = \{W_{i,x}\}$, construct new objects by parallel translating

$$W'_{x,i} = U_{x,K\mu}W_{x+K\mu,i}U^{\dagger}_{x,K\mu}$$

by K steps in μ direction, and add these to \mathcal{W}'

$$\mathcal{W}' = \left\{ W_{i,x}, \ U_{x,\hat{x}} W_{x+\hat{x},i} U_{x,\hat{x}}^{\dagger}, \dots \right\}$$

where

- $\mu \in {\{\hat{x}, \hat{y}\}}$ runs over lattice directions
- *K* ∈ {0,..., kernel size} determines the maximum distance to translate *W* elements

Extend both $\mathcal W$ and $\mathcal W'$ by hermitian conjugate and identity elements, e.g.

$$\mathcal{W} \mapsto \{\mathcal{W}_{i,x}, \mathcal{W}_{i,x}^{\dagger}, \mathbf{1}_{x}\},\$$

then multiply all local terms

$$(\mathcal{W}, \mathcal{W}') \mapsto \mathcal{W}''_{\mathsf{x},i} = \sum_{jk} \alpha_{ijk} \mathcal{W}_{\mathsf{x},j} \mathcal{W}'_{\mathsf{x},k},$$

where

- $i \in \{1, \dots, N_{out}\}$ runs over number of output channels
- $\alpha_{ijk} \in \mathbb{C}$ are trainable weights

Combine these steps into a single layer

```
L-CB: (\mathcal{U}, \mathcal{W}) \mapsto \{W''_{x,i}\}
```

where the layer is specified by a choice of output channels and kernel size (N_{out}, K)

• Allows for a bias and acts as a residual layer

Stacking L-CB layers constructs arbitrary untraced Wilson loops [Favoni et al. '20]

- Plaq gives all 1×1 Wilson loops
- Single L-CB output has linear combinations of 1 \times 2 and 2 \times 1 loops, plus original 1 \times 1 plaquettes and their squares

Output of network taken to be $\log \Psi$:

$\log \Psi \equiv \textbf{Dense} \circ \textbf{Global Pooling} \circ \textbf{Trace} \circ \ldots \circ \textbf{L-CB} \circ \textbf{Plaq}$

- Complex weights: output can encode non-trivial phase structure
- Translation invariant

Implemented using NetKet 3 [Vicentini et al. '21] and JAX/Flax

- Training minimises $\langle H\rangle$ with respect to network weights via stochastic gradient descent
- Hilbert space too large to sum over exactly, compute expectation values etc. using sample of field configurations, chosen by local Metropolis algorithm

Some practical comments

NetKet includes preconditioning of the gradient

• Use stochastic reconfiguration in all cases [Sorella et al. '07]

Use transfer learning when scanning over coupling

• Work from large to small coupling

Bilinear structure can easily lead to vanishing / exploding gradients – important to initialise network properly for deep networks

• No analytic results (e.g. Xavier initialisation) – find empirically, tune weights layer-by-layer to fix variance (c.f. LSUV [Mishkin, Matas '15])

Networks with 2 to 10 L-CB layers (500 to 15000 params), trained using single V100

Application: \mathbb{Z}_2 gauge theory

For \mathbb{Z}_2 , clock/shift are simply Pauli operators: $Q \equiv Z$ and $P \equiv X$

By duality, equivalent to classical Ising model in 3d

• In universality class of Ising CFT3 [Wilson, Fisher '72]

Phase transition for spontaneous breaking of $\mathbb{Z}_2^{(1)}$ emergent one-form symmetry

Ground-state energy

Figure 1: Energy $\langle H \rangle$ for on a 2 × 2 lattice as a function of coupling *g*. Networks trained for up to 500 iterations with 4096 MC samples per step. Training stopped once the variance, Var $H = \langle H^2 \rangle - \langle H \rangle^2$, stabilised to a value of 0.0001 or less.

Ground-state energy

Figure 2: Expectation value $\langle H \rangle$ for \mathbb{Z}_2 gauge theory for varying lattice sizes as a function of coupling *g*, focused on the region around the critical coupling.

Locating the phase transition

Most accurate identification comes from dual spin system [Blöte, Deng '02]

• \mathbb{Z}_2 gauge theory $\leftrightarrow \mathsf{TFIM} \leftrightarrow \mathsf{limit}$ of classical Ising model in 3d

 $g_c = 0.757051$

Previous work on gauge-equivariant NNs [Luo et al. '20]

- String tension on 12×12 lattice

 $g_c\approx 0.7$

We search for the phase transition – diagnosed by order and disorder parameters

Wilson loop of Z operators, $W_{\Gamma} = \prod_{\Gamma} Z$, along closed path Γ on lattice [Wegner '71; Kogut '79]

- In deconfined phase, (W) decays with perimeter law
- In confined phase, $\langle W \rangle$ decays with area law

Disorder parameter

't Hooft string of X operators, $T = \prod_{\tilde{\Gamma}} X$, along open path $\tilde{\Gamma}$ between two points on *dual* lattice

- $\langle T \rangle$ independent of path due to Gauss' law
- In deconfined phase, creates a pair of quasi-particles (magnetic monopoles) – (T) decays exponentially with distance
- In confined phase, (T) independent of distance – "monopoles condensed"

Ordered phase	Disordered phase
$g < g_c$	$m{g} > m{g}_{c}$
$\langle {\cal W} angle \sim$ perimeter law	$\langle \mathcal{W} angle \sim$ area law
$\langle T angle \sim$ exp. decay with distance	$\langle T angle \sim {\sf constant}$
electric flux lines condensed	mag. monopoles condensed
$\mathbb{Z}_2^{(1)}$ broken	$\mathbb{Z}_2^{(1)}$ preserved
"deconfined"	"confined"

[Rayhaun, Williamson '23]

To identify the critical coupling, we look for signs of the confinement transition

Order parameter

Figure 3: Lattice average of the 1-plaquette Wilson loop (magnetic flux energy, $B = \sum_{\Box} W_{\Box}$). The dotted line indicates the expected critical coupling at $g_c = 0.757$.

Confinement

Classic signal of confinement: Wilson loops have area-law decay

Generically

$$\langle W_{\Gamma} \rangle \sim \exp(-\kappa P_{\Gamma} - \sigma A_{\Gamma}),$$

where σ is string tension – zero in deconfined phase and positive in confined phase

• Not a "clean" diagnostic - there is always a perimeter-law contribution

Can estimate σ via Creutz ratio [Creutz '80]

$$\sigma \approx -\log \frac{\langle W_{l \times l} \rangle \langle W_{(l-1) \times (l-1)} \rangle}{\langle W_{(l-1) \times l} \rangle \langle W_{l \times (l-1)} \rangle}$$

String tension

Figure 4: String tension estimated from Creutz ratio for l = 2 on a 6×6 lattice. For $g > g_c$, Wilson loops decay rapidly with size. Estimate of σ challenging with Monte Carlo sampling – ratio of very small numbers.

Disordered phase
$g > g_{c}$
$\langle \mathcal{W} angle \sim$ area law
$\langle T angle \sim {\sf constant}$
mag. monopoles condensed
$\mathbb{Z}_2^{(1)}$ preserved
"confined"

[Rayhaun, Williamson '23]

Cleaner to look at decay of 't Hooft string

Disorder parameter

Figure 5: Lattice average of the 't Hooft string operator near the critical point for L = 10. Distance L/2 = 5 between ends of 't Hooft string.

For a continuous phase transition, can identify critical point using the Binder cumulant of the order parameter [Binder '81]

$$U(W) = 1 - rac{\langle W^4
angle_{
m c}}{3 \langle W^2
angle_{
m c}^2}$$

- At leading order in L⁻¹, finite-scaling theory predicts that the Binder cumulant has a universal value for all lattice sizes at the critical point
- Implies that the curves for different *L* must cross at the critical coupling
- Next-order terms in L^{-1} lead to a small offset

Binder cumulant

Figure 6: Binder cumulant U(W) of 1-plaquette Wilson loops. The dotted yellow line indicates is the critical coupling at $g_c = 0.757$.

Extrapolation

To extrapolate to $L \rightarrow \infty$ limit, use BST extrapolation [Bulirsch, Stoer '64; Henkel, Patkos '87; Henkel, Schütz '88]

• Look at pairs (*L*, *g*_{crossing}):

(2, 0.767512) (4, 0.768072) (6, 0.760667) (8, 0.758856)

• Construct a sequence which converges to $L
ightarrow \infty$ limit more rapidly

Extrapolation predicts

$$g_{c} = 0.756(2)$$

• Compare with 0.757051 from dual spin model

Curve collapse

Near to the critical point, leading-order finite-scaling theory predicts observables are functions of

$$\tilde{g} = L^{1/\nu}(g - g_c)/g_c$$

e.g. 't Hooft string $\langle T \rangle$ should scale as

$$\langle T \rangle = L^{-\beta/\nu} t(\tilde{g})$$

• ν and β are correlation length and magnetisation critical exponents

Curve collapse: plot of $L^{\beta/v} \langle T \rangle$ vs \tilde{g} independent of L near to $\tilde{g} = 0$

• Extract $g_{\rm c}$, β and ν by minimising distance between curves

Collapse of disorder parameter

Figure 7: Lattice average of the 't Hooft string for varying lattice size. Distance L/2 between ends of 't Hooft string.

Critical exponents and the Ising CFT

Ising: [Blöte, Deng '02]

$$g_{c} = 0.757051$$
 $\nu = 0.629971$ $\beta = 0.326419$

Curve collapse:

$$g_c \approx 0.766$$
 $\nu \approx 0.610$ $\beta \approx 0.320$

Only includes leading-order L^{-1} behaviour (worse than BST extrapolation)

• Larger lattice sizes should give more accurate results as next-order corrections in L^{-1} suppressed (Ising data for L = 2, ..., 48)

\mathbb{Z}_2 vs \mathbb{Z}_3 : a first-order phase transition?

Figure 8: Derivative of $\langle H \rangle / L^2$ with respect to g^2 for \mathbb{Z}_2 (left) and \mathbb{Z}_3 (right).

First-order phase transition \Rightarrow derivative of energy is discontinuous

• Finite correlation length, but can be much larger than achievable system size [Binder '81]

Neural-network quantum states are a powerful tool for studying interacting quantum systems

Gauge-equivariant CNNs extend this tool to lattice gauge theories

Provide accurate and flexible approximation of ground state for \mathbb{Z}_{N} theories

Can be used to probe phase transitions, critical exponents, and more

Deeper networks

- NetKet and JAX scale well with number of GPUs
- Phase vs amplitude learning?

Symmetries: time reversal, reflection, etc.

Extension to U(1) and SU(N) (in progress)

- LGE-CNN structure remains the same
- How does complexity scale for non-abelian groups?

Include matter fields at lattice sites

• Lattice QED/QCD?

Extra

Ground-state energy

Figure 9: Expectation value $\langle H \rangle$ for \mathbb{Z}_3 gauge theory on a 2 × 2 lattice as a function of coupling *g*. The solid teal line is the exact diagonalization result, computed using NetKet. The inset shows the difference between the ground state energies calculated using the neural network and exact diagonalisation.

Ground-state energy

Figure 10: Expectation value $\langle H \rangle$ for \mathbb{Z}_3 gauge theory for varying lattice sizes as a function of coupling *g*, focused on the region around the critical coupling.

Given a state $|\psi
angle$, one can compute $\langle \hat{O}
angle$ via

$$\langle \hat{\mathsf{O}}
angle = \langle \psi | \hat{\mathsf{O}} | \psi
angle = \sum_{\sigma} |\psi(\sigma)|^2 \sum_{\eta} \frac{\langle \sigma | \hat{\mathsf{O}} | \eta
angle \langle \eta | \psi
angle}{\langle \sigma | \psi
angle} = \mathbb{E}_{\sigma \sim |\psi(\sigma)|^2} \big[\mathcal{E}_{\mathsf{loc}}(\sigma) \big],$$

where σ and η are gauge field configurations, $\mathbb{E}_{\sigma \sim |\psi(\sigma)|^2}$ means take the expectation value over σ , with σ distributed according to the PDF $|\psi(\sigma)|^2$, and we have defined the "local energy"

$$E_{ ext{loc}}(\sigma) = \sum_{\eta} rac{\langle \sigma | \hat{O} | \eta
angle \langle \eta | \psi
angle}{\langle \sigma | \psi
angle}.$$

Variational Monte Carlo with NetKet

In order to evaluate this expectation value via variational Monte Carlo, one needs to:

- 1. Restrict to a finite sum over σ by sampling the PDF, $|\psi(\sigma)|^2$. This is provided by the Monte Carlo variational state interface of NetKet.
- 2. Compute the "connected elements" for the samples $\{\sigma\}$, i.e. those for which $\langle \sigma | \hat{O} | \eta \rangle \neq 0$. For each σ , one can restrict to a (usually much) smaller set of configurations, labelled by $\{\eta\}$. Then compute the matrix elements themselves.
- 3. Calculate the local energies $E_{loc}(\sigma)$ given the matrix elements, the sets $\{\sigma\}$ and $\{\eta\}$, and the state $|\psi\rangle$. Again, this implementation is provided by NetKet.
- 4. The statistical average of the local energies weighted by $|\psi(\sigma)|^2$.

Stochastic reconfiguration

Stochastic gradient descent with a non-trivial weight-space metric, c.f. imaginary time evolution [Sorella et al. '07]

$$(1 - \epsilon H) |\Psi\rangle \approx e^{-\epsilon H} |\Psi\rangle = e^{-\epsilon H} \sum_{i=0} c_i |i\rangle = e^{-\epsilon E_0} c_0 |0\rangle + e^{-\epsilon E_1} c_1 |1\rangle + \dots$$

• Iterating this will project a trial wavefunction onto the ground state

Construct a weight update rule so that the updated state is $(1 - \epsilon H) |\Psi
angle$

$$\theta_{\alpha} \mapsto \theta_{\alpha} - \eta(\mathsf{S}^{-1})_{\alpha\beta}\mathsf{R}_{\beta}$$

where

$$\mathsf{O}_{\alpha}|\psi\rangle = \partial_{\alpha}|\psi\rangle, \qquad \mathsf{R}_{\alpha} = \langle \mathsf{O}_{\alpha}^{\dagger}\mathsf{H}\rangle - \langle \mathsf{O}_{\alpha}^{\dagger}\rangle\langle\mathsf{H}\rangle, \qquad \mathsf{S}_{\alpha\beta} = \langle \mathsf{O}_{\alpha}^{\dagger}\mathsf{O}_{\beta}\rangle - \langle \mathsf{O}_{\alpha}^{\dagger}\rangle\langle\mathsf{O}_{\beta}\rangle$$